IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9240-d994858.html
   My bibliography  Save this article

Recurrent Convolutional Neural Network-Based Assessment of Power System Transient Stability and Short-Term Voltage Stability

Author

Listed:
  • Estefania Alexandra Tapia

    (Electrical Energy Institute, Universidad Nacional de San Juan—CONICET, San Juan 5400, Argentina)

  • Delia Graciela Colomé

    (Electrical Energy Institute, Universidad Nacional de San Juan—CONICET, San Juan 5400, Argentina)

  • José Luis Rueda Torres

    (Department of Electrical Sustainable Energy, Delft University of Technology (TU Delft), 2628 CN, The Netherlands)

Abstract

Transient stability (TS) and short-term voltage stability (STVS) assessment are of fundamental importance for the operation security of power systems. Both phenomena can be mutually influenced in weak power systems due to the proliferation of power electronic interface devices and the phase-out of conventional heavy machines (e.g., thermal power plants). There is little research on the assessment of both types of stability together, despite the fact that they develop over the same short-term period, and that they can have a major influence on the overall transient performance driven by large electrical disturbances (e.g., short circuits). This work addresses this open research challenge by proposing a methodology for the joint assessment of TS and STVS. The methodology aims at estimating the resulting short-term stability state (STSS) in stable, or unstable conditions, following critical events, such as the synchronism loss of synchronous generators (SG) or the stalling of induction motors (IM). The estimations capture the mechanisms responsible for the degradations of TS and STVS, respectively. The paper overviews the off-line design of the data-driven STSS classification methodology, which supports the design and training of a hybrid deep neural network RCNN (recurrent convolutional neural network). The RCNN can automatically capture spatial and temporal features from the power system through a time series of selected physical variables, which results in a high estimation degree for STSS in real-time applications. The methodology is tested on the New England 39-bus system, where the results demonstrate the superiority of the proposed methodology over other traditional and deep learning-based methodologies. For reference purposes, the numerical tests also illustrate the classification performance in special situations, when the training is performed by exclusively using measurements from generation and motor load buses, which constitute locations where the investigated stability can be observed.

Suggested Citation

  • Estefania Alexandra Tapia & Delia Graciela Colomé & José Luis Rueda Torres, 2022. "Recurrent Convolutional Neural Network-Based Assessment of Power System Transient Stability and Short-Term Voltage Stability," Energies, MDPI, vol. 15(23), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9240-:d:994858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    2. Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
    3. Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
    4. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    5. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Tayo Uthman Badrudeen & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2023. "Neural Network Based Approach for Steady-State Stability Assessment of Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    7. Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
    8. Sun, Chenhao & Xu, Hao & Zeng, Xiangjun & Wang, Wen & Jiang, Fei & Yang, Xin, 2023. "A vulnerability spatiotemporal distribution prognosis framework for integrated energy systems within intricate data scenes according to importance-fuzzy high-utility pattern identification," Applied Energy, Elsevier, vol. 344(C).
    9. Li, Yang & Zhang, Meng & Chen, Chen, 2022. "A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems," Applied Energy, Elsevier, vol. 308(C).
    10. Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
    11. Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
    12. Izzuddin Fathin Azhar & Lesnanto Multa Putranto & Roni Irnawan, 2022. "Development of PMU-Based Transient Stability Detection Methods Using CNN-LSTM Considering Time Series Data Measurement," Energies, MDPI, vol. 15(21), pages 1-20, November.
    13. Chenhao, Sun & Yaoding, Wang & Xiangjun, Zeng & Wen, Wang & Chun, Chen & Yang, Shen & Zhijie, Lian & Quan, Zhou, 2024. "A hybrid spatiotemporal distribution forecast methodology for IES vulnerabilities under uncertain and imprecise space-air-ground monitoring data scenarios," Applied Energy, Elsevier, vol. 373(C).
    14. Heungseok Lee & Jongju Kim & June Ho Park & Sang-Hwa Chung, 2023. "Power System Transient Stability Assessment Using Convolutional Neural Network and Saliency Map," Energies, MDPI, vol. 16(23), pages 1-22, November.
    15. Dahu Li & Hongyu Zhou & Yuan Chen & Yue Zhou & Yuze Rao & Wei Yao, 2023. "A Frequency Support Approach for Hybrid Energy Systems Considering Energy Storage," Energies, MDPI, vol. 16(10), pages 1-16, May.
    16. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    17. Zhan, Xianwen & Han, Song & Rong, Na & Cao, Yun, 2023. "A hybrid transfer learning method for transient stability prediction considering sample imbalance," Applied Energy, Elsevier, vol. 333(C).
    18. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    19. Zhang, Jinlai & Yang, Wenjie & Chen, Yumei & Ding, Mingkang & Huang, Huiling & Wang, Bingkun & Gao, Kai & Chen, Shuhan & Du, Ronghua, 2024. "Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks," Applied Energy, Elsevier, vol. 372(C).
    20. Hua, Weiqi & Stephen, Bruce & Wallom, David C.H., 2023. "Digital twin based reinforcement learning for extracting network structures and load patterns in planning and operation of distribution systems," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9240-:d:994858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.