Recurrent Convolutional Neural Network-Based Assessment of Power System Transient Stability and Short-Term Voltage Stability
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
- Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
- Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
- Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Tayo Uthman Badrudeen & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2023. "Neural Network Based Approach for Steady-State Stability Assessment of Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
- Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
- Sun, Chenhao & Xu, Hao & Zeng, Xiangjun & Wang, Wen & Jiang, Fei & Yang, Xin, 2023. "A vulnerability spatiotemporal distribution prognosis framework for integrated energy systems within intricate data scenes according to importance-fuzzy high-utility pattern identification," Applied Energy, Elsevier, vol. 344(C).
- Li, Yang & Zhang, Meng & Chen, Chen, 2022. "A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems," Applied Energy, Elsevier, vol. 308(C).
- Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
- Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
- Izzuddin Fathin Azhar & Lesnanto Multa Putranto & Roni Irnawan, 2022. "Development of PMU-Based Transient Stability Detection Methods Using CNN-LSTM Considering Time Series Data Measurement," Energies, MDPI, vol. 15(21), pages 1-20, November.
- Heungseok Lee & Jongju Kim & June Ho Park & Sang-Hwa Chung, 2023. "Power System Transient Stability Assessment Using Convolutional Neural Network and Saliency Map," Energies, MDPI, vol. 16(23), pages 1-22, November.
- Dahu Li & Hongyu Zhou & Yuan Chen & Yue Zhou & Yuze Rao & Wei Yao, 2023. "A Frequency Support Approach for Hybrid Energy Systems Considering Energy Storage," Energies, MDPI, vol. 16(10), pages 1-16, May.
- Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
- Zhan, Xianwen & Han, Song & Rong, Na & Cao, Yun, 2023. "A hybrid transfer learning method for transient stability prediction considering sample imbalance," Applied Energy, Elsevier, vol. 333(C).
- Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
- Hua, Weiqi & Stephen, Bruce & Wallom, David C.H., 2023. "Digital twin based reinforcement learning for extracting network structures and load patterns in planning and operation of distribution systems," Applied Energy, Elsevier, vol. 342(C).
- Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
- Nan Li & Jiafei Wu & Lili Shan & Luan Yi, 2024. "Transient Stability Assessment of Power Systems Based on CLV-GAN and I-ECOC," Energies, MDPI, vol. 17(10), pages 1-18, May.
More about this item
Keywords
transient stability (TS); short-term voltage stability (STVS); recurrent convolutional neural networks (RCNN); convolutional neural network (CNN); long short-term memory network (LSTM); real-time prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9240-:d:994858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.