IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4620-d1478475.html
   My bibliography  Save this article

Transient Active Power in Two-Terminal Networks

Author

Listed:
  • Konrad Hawron

    (Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 St., 31-155 Cracow, Poland)

  • Bartosz Rozegnał

    (Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 St., 31-155 Cracow, Poland)

  • Maciej Sułowicz

    (Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 St., 31-155 Cracow, Poland)

Abstract

This article presents the hitherto unknown concept of transient active power in two-terminal networks. This phenomenon occurs when current and voltage signals are not sinusoidal but quasi-sinusoidal—in the case of an approximation of transient state. The modification of Parseval’s formula and the power–immittance relations are presented in this paper. To illustrate the phenomenon, a simulation is included for several types of transient states, and their influence on transient active power waveform is shown. The article also contains a comparison of transient active power and classical active power and highlights situations where it is impossible to use classical theory but where transient active power yields measurable results. In the article, an analysis of an idealized case and measurement data obtained from a modeled voltage sag in a laboratory setup is conducted. The impact of disturbance power on the total power in the case of disturbances that may occur in the real power network is demonstrated.

Suggested Citation

  • Konrad Hawron & Bartosz Rozegnał & Maciej Sułowicz, 2024. "Transient Active Power in Two-Terminal Networks," Energies, MDPI, vol. 17(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4620-:d:1478475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arcadio Perilla & Stelios Papadakis & Jose Luis Rueda Torres & Mart van der Meijden & Peter Palensky & Francisco Gonzalez-Longatt, 2020. "Transient Stability Performance of Power Systems with High Share of Wind Generators Equipped with Power-Angle Modulation Controllers or Fast Local Voltage Controllers," Energies, MDPI, vol. 13(16), pages 1-17, August.
    2. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petar Sarajcev & Dino Lovric, 2024. "Machine Learning Classifier for Supporting Generator’s Impedance-Based Relay Protection Functions," Energies, MDPI, vol. 17(8), pages 1-16, April.
    2. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    4. Petar Sarajcev & Dino Lovric, 2023. "Manifold Learning in Electric Power System Transient Stability Analysis," Energies, MDPI, vol. 16(23), pages 1-20, November.
    5. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
    6. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    7. Teshome Lindi Kumissa & Fekadu Shewarega, 2023. "Fast Power System Transient Stability Simulation," Energies, MDPI, vol. 16(20), pages 1-17, October.
    8. Mihail Senyuk & Murodbek Safaraliev & Firuz Kamalov & Hana Sulieman, 2023. "Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    9. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Parametric Sensitivity Analysis of Rotor Angle Stability Indicators," Energies, MDPI, vol. 14(16), pages 1-13, August.
    10. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2022. "Artificial Intelligence Techniques for Power System Transient Stability Assessment," Energies, MDPI, vol. 15(2), pages 1-21, January.
    11. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    12. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4620-:d:1478475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.