IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3148-d563895.html
   My bibliography  Save this article

Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble

Author

Listed:
  • Petar Sarajcev

    (Department of Power Engineering, University of Split, FESB, 21000 Split, Croatia)

  • Antonijo Kunac

    (Department of Power Engineering, University of Split, FESB, 21000 Split, Croatia)

  • Goran Petrovic

    (Department of Power Engineering, University of Split, FESB, 21000 Split, Croatia)

  • Marin Despalatovic

    (Department of Power Engineering, University of Split, FESB, 21000 Split, Croatia)

Abstract

Increased integration of renewable energy sources brings new challenges to the secure and stable power system operation. Operational challenges emanating from the reduced system inertia, in particular, will have important repercussions on the power system transient stability assessment (TSA). At the same time, a rise of the “big data” in the power system, from the development of wide area monitoring systems, introduces new paradigms for dealing with these challenges. Transient stability concerns are drawing attention of various stakeholders as they can be the leading causes of major outages. The aim of this paper is to address the power system TSA problem from the perspective of data mining and machine learning (ML). A novel 3.8 GB open dataset of time-domain phasor measurements signals is built from dynamic simulations of the IEEE New England 39-bus test case power system. A data processing pipeline is developed for features engineering and statistical post-processing. A complete ML model is proposed for the TSA analysis, built from a denoising stacked autoencoder and a voting ensemble classifier. Ensemble consist of pooling predictions from a support vector machine and a random forest. Results from the classifier application on the test case power system are reported and discussed. The ML application to the TSA problem is promising, since it is able to ingest huge amounts of data while retaining the ability to generalize and support real-time decisions.

Suggested Citation

  • Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3148-:d:563895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arcadio Perilla & Stelios Papadakis & Jose Luis Rueda Torres & Mart van der Meijden & Peter Palensky & Francisco Gonzalez-Longatt, 2020. "Transient Stability Performance of Power Systems with High Share of Wind Generators Equipped with Power-Angle Modulation Controllers or Fast Local Voltage Controllers," Energies, MDPI, vol. 13(16), pages 1-17, August.
    2. Yuwei Zhang & Wenying Liu & Fangyu Wang & Yaoxiang Zhang & Yalou Li, 2020. "Reactive Power Control Method for Enhancing the Transient Stability Total Transfer Capability of Transmission Lines for a System with Large-Scale Renewable Energy Sources," Energies, MDPI, vol. 13(12), pages 1-14, June.
    3. Sergio Bruno & Giovanni De Carne & Massimo La Scala, 2020. "Distributed FACTS for Power System Transient Stability Control," Energies, MDPI, vol. 13(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teshome Lindi Kumissa & Fekadu Shewarega, 2023. "Fast Power System Transient Stability Simulation," Energies, MDPI, vol. 16(20), pages 1-17, October.
    2. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Mihail Senyuk & Murodbek Safaraliev & Firuz Kamalov & Hana Sulieman, 2023. "Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    4. Petar Sarajcev & Dino Lovric, 2024. "Machine Learning Classifier for Supporting Generator’s Impedance-Based Relay Protection Functions," Energies, MDPI, vol. 17(8), pages 1-16, April.
    5. Konrad Hawron & Bartosz Rozegnał & Maciej Sułowicz, 2024. "Transient Active Power in Two-Terminal Networks," Energies, MDPI, vol. 17(18), pages 1-17, September.
    6. Petar Sarajcev & Dino Lovric, 2023. "Manifold Learning in Electric Power System Transient Stability Analysis," Energies, MDPI, vol. 16(23), pages 1-20, November.
    7. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    8. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
    9. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2022. "Artificial Intelligence Techniques for Power System Transient Stability Assessment," Energies, MDPI, vol. 15(2), pages 1-21, January.
    2. Konrad Hawron & Bartosz Rozegnał & Maciej Sułowicz, 2024. "Transient Active Power in Two-Terminal Networks," Energies, MDPI, vol. 17(18), pages 1-17, September.
    3. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    4. Paweł Albrechtowicz & Jerzy Szczepanik, 2021. "The Comparative Analysis of Phase Shifting Transformers," Energies, MDPI, vol. 14(14), pages 1-16, July.
    5. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Tawfik Guesmi & Badr M. Alshammari & Yasser Almalaq & Ayoob Alateeq & Khalid Alqunun, 2021. "New Coordinated Tuning of SVC and PSSs in Multimachine Power System Using Coyote Optimization Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    7. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.
    8. Yosra Welhazi & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ayoob Alateeq & Yasser Almalaq & Robaya Alsabhan & Hsan Hadj Abdallah, 2022. "A Novel Hybrid Chaotic Jaya and Sequential Quadratic Programming Method for Robust Design of Power System Stabilizers and Static VAR Compensator," Energies, MDPI, vol. 15(3), pages 1-43, January.
    9. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Parametric Sensitivity Analysis of Rotor Angle Stability Indicators," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3148-:d:563895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.