IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8023-d421042.html
   My bibliography  Save this article

Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data

Author

Listed:
  • Zahoor Ali Khan

    (Computer Information Science, Higher Colleges of Technology, Fujairah 4114, UAE)

  • Muhammad Adil

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Malik Najmus Saqib

    (Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia)

  • Muhammad Shafiq

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea)

  • Jin-Ghoo Choi

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea)

Abstract

Due to the increase in the number of electricity thieves, the electric utilities are facing problems in providing electricity to their consumers in an efficient way. An accurate Electricity Theft Detection (ETD) is quite challenging due to the inaccurate classification on the imbalance electricity consumption data, the overfitting issues and the High False Positive Rate (FPR) of the existing techniques. Therefore, intensified research is needed to accurately detect the electricity thieves and to recover a huge revenue loss for utility companies. To address the above limitations, this paper presents a new model, which is based on the supervised machine learning techniques and real electricity consumption data. Initially, the electricity data are pre-processed using interpolation, three sigma rule and normalization methods. Since the distribution of labels in the electricity consumption data is imbalanced, an Adasyn algorithm is utilized to address this class imbalance problem. It is used to achieve two objectives. Firstly, it intelligently increases the minority class samples in the data. Secondly, it prevents the model from being biased towards the majority class samples. Afterwards, the balanced data are fed into a Visual Geometry Group (VGG-16) module to detect abnormal patterns in electricity consumption. Finally, a Firefly Algorithm based Extreme Gradient Boosting (FA-XGBoost) technique is exploited for classification. The simulations are conducted to show the performance of our proposed model. Moreover, the state-of-the-art methods are also implemented for comparative analysis, i.e., Support Vector Machine (SVM), Convolution Neural Network (CNN), and Logistic Regression (LR). For validation, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Receiving Operating Characteristics Area Under Curve (ROC-AUC), and Precision Recall Area Under Curve (PR-AUC) metrics are used. Firstly, the simulation results show that the proposed Adasyn method has improved the performance of FA-XGboost classifier, which has achieved F1-score, precision, and recall of 93.7%, 92.6%, and 97%, respectively. Secondly, the VGG-16 module achieved a higher generalized performance by securing accuracy of 87.2% and 83.5% on training and testing data, respectively. Thirdly, the proposed FA-XGBoost has correctly identified actual electricity thieves, i.e., recall of 97%. Moreover, our model is superior to the other state-of-the-art models in terms of handling the large time series data and accurate classification. These models can be efficiently applied by the utility companies using the real electricity consumption data to identify the electricity thieves and overcome the major revenue losses in power sector.

Suggested Citation

  • Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8023-:d:421042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    2. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    3. Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
    4. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    5. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    6. Aqib Jamil & Turki Ali Alghamdi & Zahoor Ali Khan & Sakeena Javaid & Abdul Haseeb & Zahid Wadud & Nadeem Javaid, 2019. "An Innovative Home Energy Management Model with Coordination among Appliances using Game Theory," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murilo A. Souza & Hugo T. V. Gouveia & Aida A. Ferreira & Regina Maria de Lima Neta & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Geraldo L. Torres & Ronaldo R. B. de Aquino, 2024. "Detection of Non-Technical Losses on a Smart Distribution Grid Based on Artificial Intelligence Models," Energies, MDPI, vol. 17(7), pages 1-16, April.
    2. Vanessa Gindri Vieira & Daniel Pinheiro Bernardon & Vinícius André Uberti & Rodrigo Marques de Figueiredo & Lucas Melo de Chiara & Juliano Andrade Silva, 2023. "Detection of Non-Technical Losses in Irrigant Consumers through Artificial Intelligence: A Pilot Study," Energies, MDPI, vol. 16(19), pages 1-17, September.
    3. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    4. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    5. Farah Mohammad & Kashif Saleem & Jalal Al-Muhtadi, 2023. "Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2023. "Stochastic generation of residential load profiles with realistic variability based on wavelet-decomposed smart meter data," Applied Energy, Elsevier, vol. 350(C).
    7. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    8. Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    9. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    10. Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    2. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
    3. Otuoze, Abdulrahaman Okino & Mustafa, Mohd Wazir & Abdulrahman, Abdulhakeem Temitope & Mohammed, Olatunji Obalowu & Salisu, Sani, 2020. "Penalization of electricity thefts in smart utility networks by a cost estimation-based forced corrective measure," Energy Policy, Elsevier, vol. 143(C).
    4. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    6. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    8. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    9. Enrique Reyes-Archundia & Wuqiang Yang & Jose A. Gutiérrez Gnecchi & Javier Rodríguez-Herrejón & Juan C. Olivares-Rojas & Aldo V. Rico-Medina, 2024. "Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances," Energies, MDPI, vol. 17(10), pages 1-14, May.
    10. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    11. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    12. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    14. Azam Bagheri & Roger Alves de Oliveira & Math H. J. Bollen & Irene Y. H. Gu, 2022. "A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances," Energies, MDPI, vol. 15(4), pages 1-14, February.
    15. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    16. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    17. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    18. Li, Yunfeng & Xue, Wenli & Wu, Ting & Wang, Huaizhi & Zhou, Bin & Aziz, Saddam & He, Yang, 2021. "Intrusion detection of cyber physical energy system based on multivariate ensemble classification," Energy, Elsevier, vol. 218(C).
    19. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    20. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8023-:d:421042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.