IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7995-d691720.html
   My bibliography  Save this article

Sparse Signal Reconstruction on Fixed and Adaptive Supervised Dictionary Learning for Transient Stability Assessment

Author

Listed:
  • Raoult Teukam Dabou

    (Electrical and Computer Science Engineering Department, Laval University, Quebec, QC G1V 0A6, Canada)

  • Innocent Kamwa

    (Electrical and Computer Science Engineering Department, Laval University, Quebec, QC G1V 0A6, Canada)

  • Jacques Tagoudjeu

    (Department of Mathematics and Physical Science, National Advanced School of Engineering of Yaoundé, University of Yaoundé I, Yaoundé P.O. Box 8390, Cameroon)

  • Francis Chuma Mugombozi

    (Department of Power Systems Simulation and Evolution, Research Institute of Hydro Québec/IREQ, Varennes, QC J3X 1S1, Canada)

Abstract

Fixed and adaptive supervised dictionary learning (SDL) is proposed in this paper for wide-area stability assessment. Single and hybrid fixed structures are developed based on impulse dictionary (ID), discrete Haar transform (DHT), discrete cosine transform (DCT), discrete sine transform (DST), and discrete wavelet transform (DWT) for sparse features extraction and online transient stability prediction. The fixed structures performance is compared with that obtained from transient K-singular value decomposition (TK-SVD) implemented while adding a stability status term to the optimization problem. Stable and unstable dictionary learning are designed based on datasets recorded by simulating thousands of contingencies with varying faults, load, and generator switching on the IEEE 68-bus test system. This separate supervised learning of stable and unstable scenarios allows determining root mean square error (RMSE), useful for online stability status assessment of new scenarios. With respect to the RMSE performance metric in signal reconstruction-based stability prediction, the present analysis demonstrates that [DWT], [DHT|DWT] and [DST|DHT|DCT] are better stability descriptors compared to K-SVD, [DHT], [DCT], [DCT|DWT], [DHT|DCT], [ID|DCT|DST], and [DWT|DHT|DCT] on test datasets. However, the K-SVD approach is faster to execute in both off-line training and real-time playback while yielding satisfactory accuracy in transient stability prediction (i.e., 7.5-cycles decision window after fault-clearing).

Suggested Citation

  • Raoult Teukam Dabou & Innocent Kamwa & Jacques Tagoudjeu & Francis Chuma Mugombozi, 2021. "Sparse Signal Reconstruction on Fixed and Adaptive Supervised Dictionary Learning for Transient Stability Assessment," Energies, MDPI, vol. 14(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7995-:d:691720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    3. Huaishuo Xiao & Jianchun Wei & Qingquan Li, 2017. "Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD) and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT)," Energies, MDPI, vol. 10(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Zbigniew Leonowicz & Michal Jasinski, 2022. "Machine Learning and Data Mining Applications in Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    2. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    3. Joe Yazbeck & John B. Rundle, 2023. "A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers," Land, MDPI, vol. 12(11), pages 1-22, October.
    4. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    5. Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    6. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    7. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    8. Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
    9. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    10. Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
    11. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    12. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    13. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    14. Sourav Malakar & Saptarsi Goswami & Bhaswati Ganguli & Amlan Chakrabarti & Sugata Sen Roy & K. Boopathi & A. G. Rangaraj, 2022. "Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering," Energies, MDPI, vol. 15(10), pages 1-16, May.
    15. Cheng-Hong Yang & Bo-Hong Chen & Chih-Hsien Wu & Kuo-Chang Chen & Li-Yeh Chuang, 2022. "Deep Learning for Forecasting Electricity Demand in Taiwan," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    16. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    17. Lillo, Fabrizio & Livieri, Giulia & Marmi, Stefano & Solomko, Anton & Vaienti, Sandro, 2023. "Analysis of bank leverage via dynamical systems and deep neural networks," LSE Research Online Documents on Economics 119917, London School of Economics and Political Science, LSE Library.
    18. Raihan Kamil & Pranda M. P. Garniwa & Hyunjin Lee, 2021. "Performance Assessment of Global Horizontal Irradiance Models in All-Sky Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
    19. Kazmi, Hussain & Tao, Zhenmin, 2022. "How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead," Applied Energy, Elsevier, vol. 323(C).
    20. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7995-:d:691720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.