IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p570-d134976.html
   My bibliography  Save this article

Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance

Author

Listed:
  • Mohammad Shoaib Shahriar

    (Department of Electrical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Ibrahim Omar Habiballah

    (Department of Electrical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Huthaifa Hussein

    (Department of Electrical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

Present-day power systems are mostly equipped with conventional meters and intended for the installation of highly accurate phasor measurement units (PMUs) to ensure better protection, monitoring and control of the network. PMU is a deliberate choice due to its unique capacity in providing accurate phasor readings of bus voltages and currents. However, due to the high expense and a requirement for communication facilities, the installation of a limited number of PMUs in a network is common practice. This paper presents an optimal approach to selecting the locations of PMUs to be installed with the objective of ensuring maximum accuracy of the state estimation (SE). The optimization technique ensures that the critical locations of the system will be covered by PMU meters which lower the negative impact of bad data on state-estimation performance. One of the well-known intelligent optimization techniques, the genetic algorithm (GA), is used to search for the optimal set of PMUs. The proposed technique is compared with a heuristic approach of PMU placement. The weighted least square (WLS), with a modified Jacobian to deal with the phasor quantities, is used to compute the estimation accuracy. IEEE 30-bus and 118-bus systems are used to demonstrate the suggested technique.

Suggested Citation

  • Mohammad Shoaib Shahriar & Ibrahim Omar Habiballah & Huthaifa Hussein, 2018. "Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance," Energies, MDPI, vol. 11(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:570-:d:134976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nazari-Heris, M. & Mohammadi-Ivatloo, B., 2015. "Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 214-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    2. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Ziad M. Ali & Seyed-Ehsan Razavi & Mohammad Sadegh Javadi & Foad H. Gandoman & Shady H.E. Abdel Aleem, 2018. "Dual Enhancement of Power System Monitoring: Improved Probabilistic Multi-Stage PMU Placement with an Increased Search Space & Mathematical Linear Expansion to Consider Zero-Injection Bus," Energies, MDPI, vol. 11(6), pages 1-17, June.
    4. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    6. Rafael Cisneros-Magaña & Aurelio Medina & Olimpo Anaya-Lara, 2018. "Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components," Energies, MDPI, vol. 11(6), pages 1-20, June.
    7. Zoran Zbunjak & Igor Kuzle, 2019. "System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)," Energies, MDPI, vol. 12(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Yang & Feng Zhai & Jialin Liu & Meng Wang & Haibo Pen, 2018. "Self-organized cyber physical power system blockchain architecture and protocol," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
    2. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    3. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    4. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    5. Mohammed Amroune & Ismail Musirin & Tarek Bouktir & Muhammad Murtadha Othman, 2017. "The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment," Energies, MDPI, vol. 10(11), pages 1-18, October.
    6. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Haghrah, A., 2017. "Optimal short-term generation scheduling of hydrothermal systems by implementation of real-coded genetic algorithm based on improved Mühlenbein mutation," Energy, Elsevier, vol. 128(C), pages 77-85.
    7. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.
    8. Khaoula Hassini & Ahmed Fakhfakh & Faouzi Derbel, 2023. "Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes," Energies, MDPI, vol. 16(20), pages 1-27, October.
    9. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiroz & Bargos, Danubia Caporusso & Neto, Morun Bernardino & Pardal, Paula Cristiane Pinto Mesquita, 2016. "Location problem method applied to sugar and ethanol mills location optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 274-282.
    10. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:570-:d:134976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.