IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p946-d1035898.html
   My bibliography  Save this article

Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland

Author

Listed:
  • Dariusz Kurz

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Agata Nowak

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

Abstract

Renewable Energy Sources (RES) have been gaining popularity on a continuous basis and the current global political situation is only accelerating energy transformation in many countries. Objectives related to environmental protection and use of RES set by different countries all over the world as well as the European Union (EU) are becoming priorities. In Poland, after years of a boom in photovoltaic (PV) installations, the Renewable Energy Sources Act has been amended, resulting in a change to the billing system for electricity produced by individual prosumers. The change in the billing method, also in pursuance to the provisions of EU laws, has contributed to the inhibition of the PV installation market for fear of energy prices and investment payback time. In this paper, by using the Net Present Value (NPV) method, three mechanisms of billing of electricity from prosumer micro-installations—based on the net-metering principle and net-billing principle (using monthly and hourly prices)—have been analysed. Particular attention has also been paid to the aspects of electricity self-consumption and energy storages, which play a significant role in the economy of PV installations in the net-billing system.

Suggested Citation

  • Dariusz Kurz & Agata Nowak, 2023. "Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland," Energies, MDPI, vol. 16(2), pages 1-40, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:946-:d:1035898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    2. Zvonimir Šimić & Danijel Topić & Ilija Crnogorac & Goran Knežević, 2021. "Method for Sizing of a PV System for Family Home Using Economic Indicators," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Maaike Braat & Odysseas Tsafarakis & Ioannis Lampropoulos & Joris Besseling & Wilfried G. J. H. M. van Sark, 2021. "Cost-Effective Increase of Photovoltaic Electricity Feed-In on Congested Transmission Lines: A Case Study of The Netherlands," Energies, MDPI, vol. 14(10), pages 1-21, May.
    4. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    5. Arkadiusz Dobrzycki & Dariusz Kurz & Ewa Maćkowiak, 2021. "Influence of Selected Working Conditions on Electricity Generation in Bifacial Photovoltaic Modules in Polish Climatic Conditions," Energies, MDPI, vol. 14(16), pages 1-24, August.
    6. Trzmiel, G. & Głuchy, D. & Kurz, D., 2020. "The impact of shading on the exploitation of photovoltaic installations," Renewable Energy, Elsevier, vol. 153(C), pages 480-498.
    7. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    8. Natalia Iwaszczuk & Mariusz Trela, 2021. "Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland," Energies, MDPI, vol. 14(6), pages 1-15, March.
    9. Daniela Cirone & Roberto Bruno & Piero Bevilacqua & Stefania Perrella & Natale Arcuri, 2022. "Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    10. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    11. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    12. Boduch, Andrzej & Mik, Krzysztof & Castro, Rui & Zawadzki, Paweł, 2022. "Technical and economic assessment of a 1 MWp floating photovoltaic system in Polish conditions," Renewable Energy, Elsevier, vol. 196(C), pages 983-994.
    13. Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorota Sikora-Fernandez & Dominik Drzazga, 2024. "Population Density as a Factor for Distributed Energy Generation Development, Renewables Consumption and CO2 Emissions: Evidence from Poland and Argentina," European Research Studies Journal, European Research Studies Journal, vol. 0(Special A), pages 202-214.
    2. Roman Korab & Marcin Połomski & Tomasz Naczyński, 2024. "Optimal Scheduling of Energy Storage and Shiftable Loads in Grid-Connected Residential Buildings with Photovoltaic Micro-Installations," Energies, MDPI, vol. 17(21), pages 1-23, October.
    3. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    4. Marcin Łuszczyk & Krzysztof Malik & Barbara Siuta-Tokarska & Agnieszka Thier, 2023. "Direction of Changes in the Settlements for Prosumers of Photovoltaic Micro-Installations: The Example of Poland as the Economy in Transition in the European Union," Energies, MDPI, vol. 16(7), pages 1-16, April.
    5. Santiago, Isabel & Palacios-Garcia, Emilio J. & Gonzalez-Redondo, Miguel & Arenas-Ramos, Victoria & Simon, Bernardo & Hayes, Barry P. & Moreno-Munoz, Antonio, 2024. "Assessment of generation capacity and economic viability of photovoltaic systems on urban buildings in southern Spain: A socioeconomic, technological, and regulatory analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    2. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    3. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.
    4. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    5. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    6. Ergun Yukseltan & Esra Agca Aktunc & Ayse H. Bilge & Ahmet Yucekaya, 2024. "An Overview of Electricity Consumption in Europe: Models for Prediction of the Electricity Usage for Heating and Cooling," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 96-111, March.
    7. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    10. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    11. Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025. "Review of explicit models for photovoltaic cell electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Nolting, Lars & Praktiknjo, Aaron, 2022. "The complexity dilemma – Insights from security of electricity supply assessments," Energy, Elsevier, vol. 241(C).
    13. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    14. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    15. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    16. Allen H. Hu & Lance Hongwei Huang & Sylvia Lou & Chien-Hung Kuo & Chin-Yao Huang & Ke-Jen Chian & Hao-Ting Chien & Hwen-Fen Hong, 2016. "Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    17. Michael Meiser & Ingo Zinnikus, 2024. "A Survey on the Use of Synthetic Data for Enhancing Key Aspects of Trustworthy AI in the Energy Domain: Challenges and Opportunities," Energies, MDPI, vol. 17(9), pages 1-29, April.
    18. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    19. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    20. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:946-:d:1035898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.