IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2722-d1097393.html
   My bibliography  Save this article

Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study

Author

Listed:
  • Francesca Ceglia

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Elisa Marrasso

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Chiara Martone

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Giovanna Pallotta

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Carlo Roselli

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

  • Maurizio Sasso

    (Department of Engineering, University of Sannio, 82100 Benevento, Italy)

Abstract

In Europe, the recast of Directive 2018/2001 defined Renewable Energy Communities as innovative configurations for renewable energy sharing between different end user types. In this regard, this work aims to assess the benefits following the constitution of a Renewable Energy Community in the industrial area of Benevento (South of Italy), involving a mixed-use building and an industrial wastewater treatment plant. The alternative single end users’ configuration has been also examined, and both solutions have been compared with the current state where the users’ electric energy requests are fully met by the power grid. The users have been equipped with a 466 kW p photovoltaic plant, modelled in HOMER Pro ® , providing in input experimental meteorological data (global solar radiation and air temperature) collected by one of the weather control units in Benevento. Real data about users’ electric energy demand have been gathered from their electricity bills, and when unavailable their electric load profiles on an hourly basis have been reconstructed based on the aggregated monthly data. Energy sharing has been proven to increase energy self-consumption and the users’ self-sufficiency. Annually, the primary energy demand is reduced by 577 MWh (1.2 MWh/kW p ), carbon dioxide emissions by 84 tCO 2 and operative costs by 101 kEUR.

Suggested Citation

  • Francesca Ceglia & Elisa Marrasso & Chiara Martone & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2023. "Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2722-:d:1097393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    2. Maria Alessandra Ancona & Francesco Baldi & Lisa Branchini & Andrea De Pascale & Federico Gianaroli & Francesco Melino & Mattia Ricci, 2022. "Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy)," Energies, MDPI, vol. 15(14), pages 1-18, July.
    3. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    4. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Elena Tarpani & Cristina Piselli & Claudia Fabiani & Ilaria Pigliautile & Eelke J. Kingma & Benedetta Pioppi & Anna Laura Pisello, 2022. "Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    6. Daniela Cirone & Roberto Bruno & Piero Bevilacqua & Stefania Perrella & Natale Arcuri, 2022. "Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    7. Guilherme Pontes Luz & Rodrigo Amaro e Silva, 2021. "Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal," Energies, MDPI, vol. 14(2), pages 1-26, January.
    8. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    9. Hentschel, Moritz & Ketter, Wolfgang & Collins, John, 2018. "Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam," Energy Policy, Elsevier, vol. 121(C), pages 61-69.
    10. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    11. Meyers, Steven & Schmitt, Bastian & Chester-Jones, Mae & Sturm, Barbara, 2016. "Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries," Energy, Elsevier, vol. 104(C), pages 266-283.
    12. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    14. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxin Ding & Qiang Wu & Xuanguo Xu, 2024. "Digital Infrastructure Construction and Improvement of Non-Farm Employment Quality of Rural Labor Force—From the Perspective of Informal Employment," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    2. Roberto Bosco & Savino Giacobbe & Salvatore Losco & Louise Anna Mozingo & Renata Valente, 2024. "Environmental Design on Site-Specific Energy Solidary Communities around Public High Schools in the Metropolitan Area of Naples (Italy)," Energies, MDPI, vol. 17(10), pages 1-27, May.
    3. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    4. Marrasso, E. & Martone, C. & Pallotta, G. & Roselli, C. & Sasso, M., 2024. "Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marrasso, E. & Martone, C. & Pallotta, G. & Roselli, C. & Sasso, M., 2024. "Assessment of energy systems configurations in mixed-use Positive Energy Districts through novel indicators for energy and environmental analysis," Applied Energy, Elsevier, vol. 368(C).
    2. Elisa Moretti & Ettore Stamponi, 2023. "The Renewable Energy Communities in Italy and the Role of Public Administrations: The Experience of the Municipality of Assisi between Challenges and Opportunities," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    3. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    4. Andrea Sarcina & Rubina Canesi, 2023. "Renewable Energy Community: Opportunities and Threats towards Green Transition," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    5. Lowitzsch, Jens & Kreutzer, Kaja & George, Jan & Croonenbroeck, Carsten & Breitschopf, Barbara, 2023. "Development prospects for energy communities in the EU identifying best practice and future opportunities using a morphological approach," Energy Policy, Elsevier, vol. 174(C).
    6. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    7. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Ahmed Abouaiana, 2022. "Rural Energy Communities as Pillar towards Low Carbon Future in Egypt: Beyond COP27," Land, MDPI, vol. 11(12), pages 1-18, December.
    9. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Guido Coletta & Luigi Pellegrino, 2022. "Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study," Energies, MDPI, vol. 15(15), pages 1-24, August.
    10. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    11. Mariuzzo, Ivan & Fina, Bernadette & Stroemer, Stefan & Raugi, Marco, 2024. "Economic assessment of multiple energy community participation," Applied Energy, Elsevier, vol. 353(PA).
    12. Margherita Povolato & Alessandro Prada & Sara Verones & Silvia Debiasi & Paolo Baggio, 2023. "The Impact of Energy Community Composition on Its Technical and Economic Performance," Energies, MDPI, vol. 16(14), pages 1-15, July.
    13. Sousa, Jorge & Lagarto, João & Camus, Cristina & Viveiros, Carla & Barata, Filipe & Silva, Pedro & Alegria, Ricardo & Paraíba, Orlando, 2023. "Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing," Energy, Elsevier, vol. 283(C).
    14. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    15. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    16. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    17. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    18. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    19. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2722-:d:1097393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.