IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124007056.html
   My bibliography  Save this article

Review of explicit models for photovoltaic cell electrical characterization

Author

Listed:
  • Pedroza-Díaz, Alfredo
  • Rodrigo, Pedro M.
  • Dávalos-Orozco, Óscar
  • De-la-Vega, Eduardo
  • Valera-Albacete, Álvaro

Abstract

For modeling solar cells, the single diode model presents difficulties in implementation and is expensive computationally because it involves a transcendental and implicit mathematical equation. Some authors have proposed explicit, easy-to-use, and computationally efficient models that approximate its behavior. It is challenging to select the proper model for each specific application because the different proposals were tested for different solar panels, operating conditions, and performance metrics, and, therefore, a direct comparison based on the published information is not possible. In this study, the existing explicit models are reviewed, presenting their equations and discussing their mathematical approximations. Four new models are introduced, and a classification of models is proposed. Furthermore, a comparative analysis of all the models under many photovoltaic technologies and operating conditions is carried out using the same performance metrics and parameter extraction method. This allows developing a framework that makes the selection of models easier for each application. The comparative results show that three models proposed by the research team are more accurate than the implicit approach, with average root mean squared errors as low as 0.41 % (versus 0.54 % error of the implicit model). However, the parameters in these models lack physical sense. Among the explicit models incorporating physical parameters and formulated with elementary functions, the most accurate is based on a first order Padé approximation (0.55 % error). The ranking of models is expected to become a valuable tool for the photovoltaic community in various solar cell modeling tasks.

Suggested Citation

  • Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025. "Review of explicit models for photovoltaic cell electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007056
    DOI: 10.1016/j.rser.2024.114979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    3. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2022. "Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    6. Andreea Sabadus & Marius Paulescu, 2021. "On the Nature of the One-Diode Solar Cell Model Parameters," Energies, MDPI, vol. 14(13), pages 1-10, July.
    7. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    8. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    9. Fathy, Ahmed & Rezk, Hegazy, 2017. "Parameter estimation of photovoltaic system using imperialist competitive algorithm," Renewable Energy, Elsevier, vol. 111(C), pages 307-320.
    10. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    11. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    12. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    13. Lee, Taesoo D. & Ebong, Abasifreke U., 2017. "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1286-1297.
    14. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    16. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    3. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    4. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    6. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2022. "Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    8. Habib Satria & Rahmad B. Y. Syah & Moncef L. Nehdi & Monjee K. Almustafa & Abdelrahman Omer Idris Adam, 2023. "Parameters Identification of Solar PV Using Hybrid Chaotic Northern Goshawk and Pattern Search," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    9. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    10. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    11. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    12. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    13. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    14. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    15. Wang, Shinong & Luo, Huan & Ge, Yuan & Liu, Shilin, 2021. "A new approach for modeling photovoltaic modules based on difference equation," Renewable Energy, Elsevier, vol. 168(C), pages 85-96.
    16. Jeehong Kim & Seok-ho Lee & Kil To Chong, 2022. "A Study of Neural Network Framework for Power Generation Prediction of a Solar Power Plant," Energies, MDPI, vol. 15(22), pages 1-19, November.
    17. Das, Abhik Kumar & Singh, Rhythm, 2024. "Explicit representation of S-shaped and standard V–I curve of illuminated solar cell," Renewable Energy, Elsevier, vol. 231(C).
    18. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    19. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    20. Slawomir Gulkowski, 2023. "Modeling and Experimental Studies of the Photovoltaic System Performance in Climate Conditions of Poland," Energies, MDPI, vol. 16(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.