Author
Listed:
- Pedroza-Díaz, Alfredo
- Rodrigo, Pedro M.
- Dávalos-Orozco, Óscar
- De-la-Vega, Eduardo
- Valera-Albacete, Álvaro
Abstract
For modeling solar cells, the single diode model presents difficulties in implementation and is expensive computationally because it involves a transcendental and implicit mathematical equation. Some authors have proposed explicit, easy-to-use, and computationally efficient models that approximate its behavior. It is challenging to select the proper model for each specific application because the different proposals were tested for different solar panels, operating conditions, and performance metrics, and, therefore, a direct comparison based on the published information is not possible. In this study, the existing explicit models are reviewed, presenting their equations and discussing their mathematical approximations. Four new models are introduced, and a classification of models is proposed. Furthermore, a comparative analysis of all the models under many photovoltaic technologies and operating conditions is carried out using the same performance metrics and parameter extraction method. This allows developing a framework that makes the selection of models easier for each application. The comparative results show that three models proposed by the research team are more accurate than the implicit approach, with average root mean squared errors as low as 0.41 % (versus 0.54 % error of the implicit model). However, the parameters in these models lack physical sense. Among the explicit models incorporating physical parameters and formulated with elementary functions, the most accurate is based on a first order Padé approximation (0.55 % error). The ranking of models is expected to become a valuable tool for the photovoltaic community in various solar cell modeling tasks.
Suggested Citation
Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025.
"Review of explicit models for photovoltaic cell electrical characterization,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
Handle:
RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007056
DOI: 10.1016/j.rser.2024.114979
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007056. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.