IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222012051.html
   My bibliography  Save this article

Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities

Author

Listed:
  • Koo, Choongwan
  • Si, Ke
  • Li, Wenzhuo
  • Lee, JeeHee

Abstract

The photovoltaic (PV) system in a building is being actively promoted; however, they have a high initial investment cost and take a long time to make money back. To solve this challenge, this study aimed to propose an integrated approach to evaluating how feed-in tariffs (FiT) affect the life cycle economic performance of PV systems in educational facilities, in which the impact of China's zonal FiT policy was investigated in various ways. The integrated approach consists of three steps: (i) data collection; (ii) technical analysis of PV systems by considering shading effects; and (iii) economic analysis of PV systems by considering a government financial supporting policy. The followings are main findings. If the self-consumed utilization plan (SC plan) and the grid-connected utilization plan (GC plan) could be mixed together and used as a single utilization plan, net present value at year 25 (NPV25), saving-to-investment ratio at year 25 (SIR25) and break-even point (BEP) were found to be 1423.03 USD/kW, 2.63, and 6.40 years, respectively. This study could be a promising approach for the managers of educational facilities to evaluate in advance whether PV systems would be feasible for their buildings from a long-term perspective with government policy (e.g., FiT upwards).

Suggested Citation

  • Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012051
    DOI: 10.1016/j.energy.2022.124302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    2. Xiong, Yongqing & Yang, Xiaohan, 2016. "Government subsidies for the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 99(C), pages 111-119.
    3. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
    4. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    5. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    6. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
    7. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    8. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    9. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    10. Brecl, Kristijan & Topič, Marko, 2011. "Self-shading losses of fixed free-standing PV arrays," Renewable Energy, Elsevier, vol. 36(11), pages 3211-3216.
    11. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    12. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    13. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    14. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    15. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    16. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    17. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    18. Ye, Liang-Cheng & Rodrigues, João F.D. & Lin, Hai Xiang, 2017. "Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016," Applied Energy, Elsevier, vol. 203(C), pages 496-505.
    19. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    20. Zhang, Libo & Chen, Changqi & Wang, Qunwei & Zhou, Dequn, 2021. "The impact of feed-in tariff reduction and renewable portfolio standard on the development of distributed photovoltaic generation in China," Energy, Elsevier, vol. 232(C).
    21. Jo, J.H. & Otanicar, T.P., 2011. "A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems," Renewable Energy, Elsevier, vol. 36(11), pages 2992-3000.
    22. Dong, Changgui & Zhou, Runmin & Li, Jiaying, 2021. "Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China," Applied Energy, Elsevier, vol. 281(C).
    23. Yang, Fei-fei & Zhao, Xin-gang, 2018. "Policies and economic efficiency of China's distributed photovoltaic and energy storage industry," Energy, Elsevier, vol. 154(C), pages 221-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Kurz & Agata Nowak, 2023. "Analysis of the Impact of the Level of Self-Consumption of Electricity from a Prosumer Photovoltaic Installation on Its Profitability under Different Energy Billing Scenarios in Poland," Energies, MDPI, vol. 16(2), pages 1-40, January.
    2. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    3. An, Young-sub & Kim, Jong-kyu & Joo, Hong-Jin & Lee, Wang-Jae & Han, Gwang-woo & Kim, Haneul & Kim, Min-Hwi, 2023. "Experimental performance analysis of photovoltaic systems applied to an positive energy community based on building renovation," Renewable Energy, Elsevier, vol. 219(P1).
    4. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    5. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    2. Zhang, Alex Hongliang & Sirin, Selahattin Murat & Fan, Conglai & Bu, Maoliang, 2022. "An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy?," Energy Policy, Elsevier, vol. 167(C).
    3. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    4. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    5. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    6. Jamil, Wan Juzaili & Abdul Rahman, Hasimah & Shaari, Sulaiman & Salam, Zainal, 2017. "Performance degradation of photovoltaic power system: Review on mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 876-891.
    7. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.
    8. Ke Shi & Chuangyi Li & Choongwan Koo, 2021. "A Techno-Economic Feasibility Analysis of Mono-Si and Poly-Si Photovoltaic Systems in the Rooftop Area of Commercial Building under the Feed-In Tariff Scheme," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    9. De Schepper, Ellen & Van Passel, Steven & Manca, Jean & Thewys, Theo, 2012. "Combining photovoltaics and sound barriers – A feasibility study," Renewable Energy, Elsevier, vol. 46(C), pages 297-303.
    10. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    11. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    12. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    14. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    15. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    16. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    17. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    19. Liu, Chang & Liu, Linlin & Zhang, Dayong & Fu, Jiasha, 2021. "How does the capital market respond to policy shocks? Evidence from listed solar photovoltaic companies in China," Energy Policy, Elsevier, vol. 151(C).
    20. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.