IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5482-d1197667.html
   My bibliography  Save this article

Hydrogen Technologies: A Critical Review and Feasibility Study

Author

Listed:
  • Vladimir Kindra

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Igor Maksimov

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Maksim Oparin

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Olga Zlyvko

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Andrey Rogalev

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

Abstract

Nowadays, one of the most important areas in refining the energy sector in the developed countries is the transition to environmentally friendly technologies, and hydrogen energy production is the most promising of them. In this rapidly advancing area, significant progress in creating new technologies for hydrogen fuel generation, transportation, storage, and consumption has been recently observed, while a fast-growing number of research papers and implemented commercial projects related to hydrogen makes it necessary to give their general review. In particular, the combination of the latest achievements in this area is of particular interest with a view to analyzing the possibility of creating hydrogen fuel supply chains. This paper presents an analytical review of existing methods of hydrogen production, storage, and transportation, including their key economic and energy-related characteristics, and proposes an approach to the creation, analysis, and optimization of hydrogen supply chains. A mathematical model has been developed to determine the cost of hydrogen, taking into account the supply chain, including production, transport and storage. Based on the results of modeling in the given scenario conditions for 2030, 2040 and 2050, promising hydrogen supply chains have been established. Under the various scenario conditions, hydrogen production by 2050 is most preferable by the method of steam conversion of methane with a cost of 8.85 USD/kg H 2 . However, due to the environmental effect, electrolysis also remains a promising technology with a cost of hydrogen produced of 17.84 USD/kg.

Suggested Citation

  • Vladimir Kindra & Igor Maksimov & Maksim Oparin & Olga Zlyvko & Andrey Rogalev, 2023. "Hydrogen Technologies: A Critical Review and Feasibility Study," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5482-:d:1197667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    2. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    4. Isabel Amez & David León & Alexander Ivannikov & Konstantin Kolikov & Blanca Castells, 2023. "Potential of CBM as an Energy Vector in Active Mines and Abandoned Mines in Russia and Europe," Energies, MDPI, vol. 16(3), pages 1-17, January.
    5. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    6. Evgeny Lisin & Galina Kurdiukova & Pavel Okley & Veronika Chernova, 2019. "Efficient Methods of Market Pricing in Power Industry within the Context of System Integration of Renewable Energy Sources," Energies, MDPI, vol. 12(17), pages 1-16, August.
    7. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    10. Alexandra Kopteva & Leonid Kalimullin & Pavel Tcvetkov & Amilcar Soares, 2021. "Prospects and Obstacles for Green Hydrogen Production in Russia," Energies, MDPI, vol. 14(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    2. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Dmitriy Kovalev, 2024. "Reforming Natural Gas for CO 2 Pre-Combustion Capture in Trinary Cycle Power Plant," Energies, MDPI, vol. 17(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Kindra & Andrey Rogalev & Maksim Oparin & Dmitriy Kovalev & Mikhail Ostrovsky, 2023. "Research and Development of the Oxy-Fuel Combustion Power Cycle for the Combined Production of Electricity and Hydrogen," Energies, MDPI, vol. 16(16), pages 1-21, August.
    2. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    3. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    5. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    6. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    8. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Calabrese, M. & Russo, D. & di Benedetto, A. & Marotta, R. & Andreozzi, R., 2023. "Formate/bicarbonate interconversion for safe hydrogen storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Yury Monakov & Alexander Tarasov & Alexander Ivannikov & Alexander Murzintsev & Nikita Shutenko, 2023. "Optimization of Equipment Operation in Power Systems Based on the Use in the Design of Frequency-Dependent Models," Energies, MDPI, vol. 16(18), pages 1-19, September.
    12. Yan, Yan & Zhang, Jiaqiao & Li, Guangzhao & Zhou, Weihao & Ni, Zhonghua, 2024. "Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    14. Cheng, Guang & Wang, Xiaoli & Chen, Kaiyuan & Zhang, Yang & Venkatesh, T.A. & Wang, Xiaolin & Li, Zunzhao & Yang, Jing, 2023. "Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
    16. Gai, Wei-Zhuo & Wang, Le-Yao & Lu, Meng-Yao & Deng, Zhen-Yan, 2023. "Effect of low concentration hydroxides on Al hydrolysis for hydrogen production," Energy, Elsevier, vol. 268(C).
    17. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    18. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    19. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5482-:d:1197667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.