IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5544-d1515160.html
   My bibliography  Save this article

Reforming Natural Gas for CO 2 Pre-Combustion Capture in Trinary Cycle Power Plant

Author

Listed:
  • Nikolay Rogalev

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Andrey Rogalev

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Vladimir Kindra

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Olga Zlyvko

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Dmitriy Kovalev

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

Abstract

Today, most of the world’s electric energy is generated by burning hydrocarbon fuels, which causes significant emissions of harmful substances into the atmosphere by thermal power plants. In world practice, flue gas cleaning systems for removing nitrogen oxides, sulfur, and ash are successfully used at power facilities but reducing carbon dioxide emissions at thermal power plants is still difficult for technical and economic reasons. Thus, the introduction of carbon dioxide capture systems at modern power plants is accompanied by a decrease in net efficiency by 8–12%, which determines the high relevance of developing methods for increasing the energy efficiency of modern environmentally friendly power units. This paper presents the results of the development and study of the process flow charts of binary and trinary combined-cycle gas turbines with minimal emissions of harmful substances into the atmosphere. This research revealed that the net efficiency rate of a binary CCGT with integrated post-combustion technology capture is 39.10%; for a binary CCGT with integrated pre-combustion technology capture it is 40.26%; a trinary CCGT with integrated post-combustion technology capture is 40.35%; and for a trinary combined-cycle gas turbine with integrated pre-combustion technology capture it is 41.62%. The highest efficiency of a trinary CCGT with integrated pre-combustion technology capture is due to a reduction in the energy costs for carbon dioxide capture by 5.67 MW—compared to combined-cycle plants with integrated post-combustion technology capture—as well as an increase in the efficiency of the steam–water circuit of the combined-cycle plant by 3.09% relative to binary cycles.

Suggested Citation

  • Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Dmitriy Kovalev, 2024. "Reforming Natural Gas for CO 2 Pre-Combustion Capture in Trinary Cycle Power Plant," Energies, MDPI, vol. 17(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5544-:d:1515160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    2. Vladimir Kindra & Igor Maksimov & Ivan Komarov & Cheng Xu & Tuantuan Xin, 2023. "Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles," Energies, MDPI, vol. 16(9), pages 1-25, May.
    3. Vladimir Kindra & Igor Maksimov & Maksim Oparin & Olga Zlyvko & Andrey Rogalev, 2023. "Hydrogen Technologies: A Critical Review and Feasibility Study," Energies, MDPI, vol. 16(14), pages 1-18, July.
    4. Mohamed, Usama & Zhao, Ying-jie & Yi, Qun & Shi, Li-juan & Wei, Guo-qing & Nimmo, William, 2021. "Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification to power generation," Renewable Energy, Elsevier, vol. 176(C), pages 366-387.
    5. Gourav Kumar Rath & Gaurav Pandey & Sakshi Singh & Nadezhda Molokitina & Asheesh Kumar & Sanket Joshi & Geetanjali Chauhan, 2023. "Carbon Dioxide Separation Technologies: Applicable to Net Zero," Energies, MDPI, vol. 16(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Maksimov & Vladimir Kindra & Andrey Vegera & Andrey Rogalev & Nikolay Rogalev, 2024. "Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 17(24), pages 1-27, December.
    2. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    4. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    6. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    7. Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.
    8. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    9. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    10. Qi, Jingwei & Wang, Yijie & Hu, Ming & Xu, Pengcheng & Yuan, Haoran & Chen, Yong, 2023. "A reactor network of biomass gasification process in an updraft gasifier based on the fully kinetic model," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5544-:d:1515160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.