IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6973-d1254581.html
   My bibliography  Save this article

High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review

Author

Listed:
  • Mustafa Alnaeli

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Mohammad Alnajideen

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Rukshan Navaratne

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Hao Shi

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Pawel Czyzewski

    (Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Ping Wang

    (Institute of Energy Research, Jiangsu University, Zhenjiang 212013, China)

  • Sven Eckart

    (Institute of Thermal Engineering, TU Bergakademie Freiberg, 09599 Freiberg, Germany)

  • Ali Alsaegh

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Ali Alnasif

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Syed Mashruk

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Agustin Valera Medina

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

  • Philip John Bowen

    (College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 AA, UK)

Abstract

This article reviews the critical role of material selection and design in ensuring efficient performance and safe operation of gas turbine engines fuelled by ammonia–hydrogen. As these energy fuels present unique combustion characteristics in turbine combustors, the identification of suitable materials becomes imperative. Detailed material characterisation is indispensable for discerning defects and degradation routes in turbine components, thereby illuminating avenues for improvement. With elevated turbine inlet temperatures, there is an augmented susceptibility to thermal degradation and mechanical shortcomings, especially in the high-pressure turbine blade—a critical life-determining component. This review highlights challenges in turbine design for ammonia–hydrogen fuels, addressing concerns like ammonia corrosion, hydrogen embrittlement, and stress corrosion cracking. To ensure engine safety and efficacy, this article advocates for leveraging advanced analytical techniques in both material development and risk evaluation, emphasising the interplay among technological progress, equipment specifications, operational criteria, and analysis methods.

Suggested Citation

  • Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6973-:d:1254581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
    2. Xiaowei Xu & Enlong Liu & Neng Zhu & Fanfu Liu & Feng Qian, 2022. "Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development," Energies, MDPI, vol. 15(3), pages 1-19, January.
    3. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    4. Li, Jun & Huang, Hongyu & Deng, Lisheng & He, Zhaohong & Osaka, Yugo & Kobayashi, Noriyuki, 2019. "Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame," Energy, Elsevier, vol. 175(C), pages 604-617.
    5. Sun, Cheng & Wang, Yun & McMurtrey, Michael D. & Jerred, Nathan D. & Liou, Frank & Li, Ju, 2021. "Additive manufacturing for energy: A review," Applied Energy, Elsevier, vol. 282(PA).
    6. Maciej Chorowski & Michał Lepszy & Krystian Machaj & Ziemowit Malecha & Dominika Porwisiak & Paweł Porwisiak & Zbigniew Rogala & Michał Stanclik, 2023. "Challenges of Application of Green Ammonia as Fuel in Onshore Transportation," Energies, MDPI, vol. 16(13), pages 1-31, June.
    7. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    8. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    9. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    10. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    11. Ditaranto, Mario & Heggset, Tarjei & Berstad, David, 2020. "Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance," Energy, Elsevier, vol. 192(C).
    12. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    13. Xing, Fei & Kumar, Arvind & Huang, Yue & Chan, Shining & Ruan, Can & Gu, Sai & Fan, Xiaolei, 2017. "Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application," Applied Energy, Elsevier, vol. 193(C), pages 28-51.
    14. Valera-Medina, Agustin & Marsh, Richard & Runyon, Jon & Pugh, Daniel & Beasley, Paul & Hughes, Timothy & Bowen, Phil, 2017. "Ammonia–methane combustion in tangential swirl burners for gas turbine power generation," Applied Energy, Elsevier, vol. 185(P2), pages 1362-1371.
    15. Sorrentino, Giancarlo & Sabia, Pino & Bozza, Pio & Ragucci, Raffaele & de Joannon, Mara, 2019. "Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions," Applied Energy, Elsevier, vol. 254(C).
    16. Guteša Božo, M. & Vigueras-Zuniga, MO. & Buffi, M. & Seljak, T. & Valera-Medina, A., 2019. "Fuel rich ammonia-hydrogen injection for humidified gas turbines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    18. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & Wang, Chenguang & Yuan, Haoran, 2017. "Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition," Energy, Elsevier, vol. 126(C), pages 796-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laith Mustafa & Rafał Ślefarski & Radosław Jankowski, 2024. "Thermodynamic Analysis of Gas Turbine Systems Fueled by a CH 4 /H 2 Mixture," Sustainability, MDPI, vol. 16(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    2. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
    4. Milana Guteša Božo & Agustin Valera-Medina, 2020. "Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels," Energies, MDPI, vol. 13(21), pages 1-20, November.
    5. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    7. Guteša Božo, M. & Vigueras-Zuniga, MO. & Buffi, M. & Seljak, T. & Valera-Medina, A., 2019. "Fuel rich ammonia-hydrogen injection for humidified gas turbines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    9. Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
    10. Yan, Beibei & Wu, Zhaoting & Zhou, Shengquan & Lv, Jingwen & Liu, Xiaoyun & Wu, Wenzhu & Chen, Guanyi, 2024. "A critical review of NH3–H2 combustion mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    11. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    12. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    13. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    14. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Xiao, Hua & Valera-Medina, Agustin & Bowen, Philip J, 2017. "Study on premixed combustion characteristics of co-firing ammonia/methane fuels," Energy, Elsevier, vol. 140(P1), pages 125-135.
    16. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    17. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    18. Mashruk, Syed & Kovaleva, Marina & Alnasif, Ali & Chong, Cheng Tung & Hayakawa, Akihiro & Okafor, Ekenechukwu C. & Valera-Medina, Agustin, 2022. "Nitrogen oxide emissions analyses in ammonia/hydrogen/air premixed swirling flames," Energy, Elsevier, vol. 260(C).
    19. Namsu Kim & Minjung Lee & Juwon Park & Jeongje Park & Taesong Lee, 2022. "A Comparative Study of NO x Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia," Energies, MDPI, vol. 15(24), pages 1-15, December.
    20. Wu, Yuwen & Weng, Chunsheng & Zheng, Quan & Wei, Wanli & Bai, Qiaodong, 2021. "Experimental research on the performance of a rotating detonation combustor with a turbine guide vane," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6973-:d:1254581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.