Potential of CBM as an Energy Vector in Active Mines and Abandoned Mines in Russia and Europe
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Boal, William M., 2018. "Work intensity and worker safety in early twentieth-century coal mining," Explorations in Economic History, Elsevier, vol. 70(C), pages 132-149.
- Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vladimir Kindra & Igor Maksimov & Maksim Oparin & Olga Zlyvko & Andrey Rogalev, 2023. "Hydrogen Technologies: A Critical Review and Feasibility Study," Energies, MDPI, vol. 16(14), pages 1-18, July.
- Vladimir Kindra & Andrey Rogalev & Maksim Oparin & Dmitriy Kovalev & Mikhail Ostrovsky, 2023. "Research and Development of the Oxy-Fuel Combustion Power Cycle for the Combined Production of Electricity and Hydrogen," Energies, MDPI, vol. 16(16), pages 1-21, August.
- Yury Monakov & Alexander Tarasov & Alexander Ivannikov & Alexander Murzintsev & Nikita Shutenko, 2023. "Optimization of Equipment Operation in Power Systems Based on the Use in the Design of Frequency-Dependent Models," Energies, MDPI, vol. 16(18), pages 1-19, September.
- Ulvi Rzazade & Sergey Deryabin & Igor Temkin & Egor Kondratev & Alexander Ivannikov, 2023. "On the Issue of the Creation and Functioning of Energy Efficiency Management Systems for Technological Processes of Mining Enterprises," Energies, MDPI, vol. 16(13), pages 1-21, June.
- Amina Andreichyk & Pavel Tsvetkov, 2023. "Study of the Relationship between Economic Growth and Greenhouse Gas Emissions of the Shanghai Cooperation Organization Countries on the Basis of the Environmental Kuznets Curve," Resources, MDPI, vol. 12(7), pages 1-20, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2021. "Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining," Energies, MDPI, vol. 14(21), pages 1-19, October.
- Anyu Zhu & Qifei Wang & Dongqiao Liu & Yihan Zhao, 2022. "Analysis of the Characteristics of CH 4 Emissions in China’s Coal Mining Industry and Research on Emission Reduction Measures," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
- Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Javier Silvestre & John E. Murray, 2023. "Determinants in the adoption of a non-labor-substitution technology: mechanical ventilation in West Virginia coal mines, 1898–1907," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 17(3), pages 467-500, September.
- Javier Silvestre, 2022.
"Productivity, Mortality, and Technology in European and US Coal Mining, 1800–1913,"
Studies in Economic History, in: Patrick Gray & Joshua Hall & Ruth Wallis Herndon & Javier Silvestre (ed.), Standard of Living, chapter 0, pages 345-371,
Springer.
- Javier Silvestre, 2021. "Productivity, Mortality, and Technology in European and US Coal Mining, 1800-1913," Working Papers 0205, European Historical Economics Society (EHES).
- Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
- Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
- Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.
More about this item
Keywords
degasification; renewable energy; methane emissions; non-conventional fuels; methane; CBM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1196-:d:1043413. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.