IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3250-d260316.html
   My bibliography  Save this article

Efficient Methods of Market Pricing in Power Industry within the Context of System Integration of Renewable Energy Sources

Author

Listed:
  • Evgeny Lisin

    (Department of Economics in Power Engineering and Industry, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya st. 14, Moscow 111250, Russia)

  • Galina Kurdiukova

    (Department of Economics in Power Engineering and Industry, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya st. 14, Moscow 111250, Russia)

  • Pavel Okley

    (OAC INTER RAO UES, Bolshaya Pirogovskaya st. 27, Moscow 119435, Russia)

  • Veronika Chernova

    (Faculty of Economics, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow 117198, Russia
    Department of Marketing, State University of Management, 99 Ryazan Avenue, Moscow 109542, Russia)

Abstract

Currently, the majority of world economies (even those located in the sunbelt (+/− 35 degrees of latitude with good sunshine with low seasonality) uses various types of fossil fuels as the main source of energy for their economies. However, this represents a very volatile and unsustainable strategy, since according to various estimates, the fossil fuel era will inevitably end as all carbon fuels are going to be spent in the next few centuries. Unlike traditional energy, renewable energy sources (RES) are not based on energy resources, but rather rely upon natural energy flows. With regard to its unique property, there has been an active construction of power plants of renewable energy and their gradual integration into national energy supply systems in recent decades. At the same time, the existing models of electricity markets were unprepared for their wide distribution. Hence, determination of the market value of energy generated by power plants using renewable energy sources becomes a particularly significant issue. This market value has to take into account the prevention of costs from the use of fossil fuels, as well as the resulting environmental benefits. Our paper proposes methods for solving this problem, contributing to the increase of economic efficiency of investment projects for the construction of renewable energy facilities and the formation of economic incentives for their propagation in energy supply systems. The proposed methods are based on the dynamic differentiation of tariffs for consumers with renewable energy sources depending on their structure of electricity consumption. Its effectiveness is demonstrated by calculating the cost of electricity for households located in the Krasnodar region using renewable energy sources. It is shown that this approach to the formation of tariffs for consumers allows the household to receive additional savings from the efficient use of energy installations on RES and energy storage devices in terms of alignment of the energy consumption schedule. This creates a significant incentive for households to use them and contributes to increasing the effectiveness of government renewable energy support programs, including by solving the acute problem of raising electricity tariffs from the grid.

Suggested Citation

  • Evgeny Lisin & Galina Kurdiukova & Pavel Okley & Veronika Chernova, 2019. "Efficient Methods of Market Pricing in Power Industry within the Context of System Integration of Renewable Energy Sources," Energies, MDPI, vol. 12(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3250-:d:260316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. Evgeny Lisin & Daria Shuvalova & Irina Volkova & Wadim Strielkowski, 2018. "Sustainable Development of Regional Power Systems and the Consumption of Electric Energy," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    3. Umbach, Frank, 2010. "Global energy security and the implications for the EU," Energy Policy, Elsevier, vol. 38(3), pages 1229-1240, March.
    4. Stamatios Ntanos & Michalis Skordoulis & Grigorios Kyriakopoulos & Garyfallos Arabatzis & Miltiadis Chalikias & Spyros Galatsidas & Athanasios Batzios & Apostolia Katsarou, 2018. "Renewable Energy and Economic Growth: Evidence from European Countries," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    5. Sovacool, Benjamin K., 2016. "Differing cultures of energy security: An international comparison of public perceptions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 811-822.
    6. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Review of policies encouraging renewable energy integration & best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 249-262.
    7. Strielkowski, Wadim & Štreimikienė, Dalia & Bilan, Yuriy, 2017. "Network charging and residential tariffs: A case of household photovoltaics in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 461-473.
    8. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    9. Bernhard Faessler & Michael Schuler & Markus Preißinger & Peter Kepplinger, 2017. "Battery Storage Systems as Grid-Balancing Measure in Low-Voltage Distribution Grids with Distributed Generation," Energies, MDPI, vol. 10(12), pages 1-14, December.
    10. Natàlia Caldés & Pablo Del Río & Yolanda Lechón & Agime Gerbeti, 2018. "Renewable Energy Cooperation in Europe: What Next? Drivers and Barriers to the Use of Cooperation Mechanisms," Energies, MDPI, vol. 12(1), pages 1-22, December.
    11. Löschel, Andreas & Moslener, Ulf & Rübbelke, Dirk T.G., 2010. "Indicators of energy security in industrialised countries," Energy Policy, Elsevier, vol. 38(4), pages 1665-1671, April.
    12. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    13. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    14. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    15. Zeel Maheshwari & Rama Ramakumar, 2017. "Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development," Energies, MDPI, vol. 10(8), pages 1-22, August.
    16. Kristijan Brecl & Marko Topič, 2018. "Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions," Energies, MDPI, vol. 11(5), pages 1-12, May.
    17. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    18. Proskuryakova, Liliana, 2017. "Energy technology foresight in emerging economies," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 205-210.
    19. Sander, Michael, 2013. "Conceptual proposals for measuring the impact of international regimes on energy security," Energy Policy, Elsevier, vol. 63(C), pages 449-457.
    20. Evgeny Lisin & Alexander Sobolev & Wadim Strielkowski & Ivan Garanin, 2016. "Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems," Energies, MDPI, vol. 9(4), pages 1-19, April.
    21. Stefan Ćetković & Aron Buzogány, 2016. "Varieties of capitalism and clean energy transitions in the European Union: When renewable energy hits different economic logics," Climate Policy, Taylor & Francis Journals, vol. 16(5), pages 642-657, July.
    22. Li, Yingzhu & Shi, Xunpeng & Yao, Lixia, 2016. "Evaluating energy security of resource-poor economies: A modified principle component analysis approach," Energy Economics, Elsevier, vol. 58(C), pages 211-221.
    23. Vasileva, Evgeniia & Viljainen, Satu & Sulamaa, Pekka & Kuleshov, Dmitry, 2015. "RES support in Russia: Impact on capacity and electricity market prices," Renewable Energy, Elsevier, vol. 76(C), pages 82-90.
    24. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    25. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    26. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
    27. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    28. Uz, Dilek, 2018. "Energy efficiency investments in small and medium sized manufacturing firms: The case of California energy crisis," Energy Economics, Elsevier, vol. 70(C), pages 421-428.
    29. Smeets, Niels, 2017. "Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme," Energy Policy, Elsevier, vol. 101(C), pages 138-149.
    30. Evgeny Lisin & Andrey Rogalev & Wadim Strielkowski & Ivan Komarov, 2015. "Sustainable Modernization of the Russian Power Utilities Industry," Sustainability, MDPI, vol. 7(9), pages 1-23, August.
    31. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    32. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    33. Kozlova, Mariia & Collan, Mikael, 2016. "Modeling the effects of the new Russian capacity mechanism on renewable energy investments," Energy Policy, Elsevier, vol. 95(C), pages 350-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Krasovskii & Nikolay Khabarov & Ruben Lubowski & Michael Obersteiner, 2019. "Flexible Options for Greenhouse Gas-Emitting Energy Producer," Energies, MDPI, vol. 12(19), pages 1-20, October.
    2. Vladimir Kindra & Igor Maksimov & Maksim Oparin & Olga Zlyvko & Andrey Rogalev, 2023. "Hydrogen Technologies: A Critical Review and Feasibility Study," Energies, MDPI, vol. 16(14), pages 1-18, July.
    3. Vladimir Kindra & Andrey Rogalev & Maksim Oparin & Dmitriy Kovalev & Mikhail Ostrovsky, 2023. "Research and Development of the Oxy-Fuel Combustion Power Cycle for the Combined Production of Electricity and Hydrogen," Energies, MDPI, vol. 16(16), pages 1-21, August.
    4. Yury Monakov & Alexander Tarasov & Alexander Ivannikov & Alexander Murzintsev & Nikita Shutenko, 2023. "Optimization of Equipment Operation in Power Systems Based on the Use in the Design of Frequency-Dependent Models," Energies, MDPI, vol. 16(18), pages 1-19, September.
    5. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    2. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    3. Banna, Hasanul & Alam, Ashraful & Chen, Xihui Haviour & Alam, Ahmed W., 2023. "Energy security and economic stability: The role of inflation and war," Energy Economics, Elsevier, vol. 126(C).
    4. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    5. Manuela Tvaronavičienė & Evgeny Lisin & Vladimir Kindra, 2020. "Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security," Energies, MDPI, vol. 13(18), pages 1-14, September.
    6. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    7. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    8. Svetlana Balashova & Svetlana Ratner & Konstantin Gomonov & Andrey Berezin, 2020. "Modeling Consumer and Industry Reaction to Renewable Support Schemes: Empirical Evidence from the USA and Applications for Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 158-167.
    9. Cox, Emily, 2018. "Assessing long-term energy security: The case of electricity in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2287-2299.
    10. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    11. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    12. Le, Thai-Ha & Nguyen, Canh Phuc, 2019. "Is energy security a driver for economic growth? Evidence from a global sample," Energy Policy, Elsevier, vol. 129(C), pages 436-451.
    13. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    14. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    15. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).
    16. Loh, Jiong Rui & Bellam, Sreenivasulu, 2024. "Towards net zero: Evaluating energy security in Singapore using system dynamics modelling," Applied Energy, Elsevier, vol. 358(C).
    17. Janusz Grabara & Arsen Tleppayev & Malika Dabylova & Leonardus W. W. Mihardjo & Zdzisława Dacko-Pikiewicz, 2021. "Empirical Research on the Relationship amongst Renewable Energy Consumption, Economic Growth and Foreign Direct Investment in Kazakhstan and Uzbekistan," Energies, MDPI, vol. 14(2), pages 1-18, January.
    18. Brutschin, Elina & Fleig, Andreas, 2018. "Geopolitically induced investments in biofuels," Energy Economics, Elsevier, vol. 74(C), pages 721-732.
    19. Ali Sabyrzhan & Gulnara Balgimbekova & Viktor Shestak, 2021. "RETRACTED ARTICLE: Economic and legal regulation of the use and development of renewable energy sources," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(4), pages 595-610, December.
    20. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3250-:d:260316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.