IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5020-d1182024.html
   My bibliography  Save this article

Hydrocarbon Fuel Flow and Heat Transfer Investigation in Rotating Channels

Author

Listed:
  • Mengqiang Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Hongyan Huang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Ram air turbines are used in the power generation systems of hypersonic vehicles, which can address the problem of the high power consumption of weapon systems. However, high incoming air temperatures can cause the turbine blades of power generation to ablate. At this point, the incoming air can no longer be used as a cooling source to cool the turbine blades. To prevent the ablation of the turbine blades of the hypersonic vehicle power generation, hydrocarbon fuel carried by the hypersonic vehicle itself is used to cool the turbine blades. Hence, hydrocarbon fuels under rotating conditions are investigated. The results show that the rotation leads to a strong pressure gradient that causes the density and dynamic viscosity of hydrocarbon fuel to increase dramatically. Compared to the static condition, the density and dynamic viscosity of the hydrocarbon fuel increase by a maximum of 65.1% and 405%, respectively, under the rotating condition. This leads to an obvious reduction in velocity. The comprehensive influence of the physical properties of the fuel, centrifugal force, and Coriolis force causes the convective heat transfer coefficient and Nusselt number of the channel to first increase and then decrease with the increase in the rotational speed. Compared to the static condition, the convective heat transfer coefficient and Nusselt number increase by a maximum of 69.7% and 45.6%, respectively, under the rotating condition. The critical rotational speed of the Nusselt number from rise to fall is 20,000 rpm for different inlet temperature conditions.

Suggested Citation

  • Mengqiang Dong & Hongyan Huang, 2023. "Hydrocarbon Fuel Flow and Heat Transfer Investigation in Rotating Channels," Energies, MDPI, vol. 16(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5020-:d:1182024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    2. Sun, Hongchuang & Qin, Jiang & Li, Haowei & Huang, Hongyan & Yan, Peigang, 2019. "Research of a combined power and cooling system based on fuel rotating cooling air turbine and organic Rankine cycle on hypersonic aircraft," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    2. Mengqiang Dong & Hongyan Huang, 2023. "Effect of Rotating Channel Turning Section Clearance Size on Heat Transfer Characteristics of Supercritical Pressure Hydrocarbon Fuel," Energies, MDPI, vol. 16(16), pages 1-18, August.
    3. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    4. Xu, Qing & Li, Haowei & Feng, Yaoxun & Li, Xiaoning & Ling, Changming & Zhou, Chaoying & Qin, Jiang, 2020. "Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system," Energy, Elsevier, vol. 211(C).
    5. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    6. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
    7. Deng, Li & Chen, Min & Tang, Hailong & Zhang, Jiyuan, 2024. "Performance evaluation of multicombustor engine for Mach3+-Level propulsion system," Energy, Elsevier, vol. 295(C).
    8. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    9. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    10. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    11. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    12. Yu, Xuanfei & Pan, Xin & Zheng, Jialin & Wang, Cong & Yu, Daren, 2017. "Thermodynamic spectrum of direct precooled airbreathing propulsion," Energy, Elsevier, vol. 135(C), pages 777-787.
    13. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    14. Seyedmatin, Pourya & Karimian, Saeed & Rostamzadeh, Hadi & Amidpour, Majid, 2020. "Electricity and hydrogen co-production via scramjet multi-expansion open cooling cycle coupled with a PEM electrolyzer," Energy, Elsevier, vol. 199(C).
    15. Sun, Hongchuang & Qin, Jiang & Li, Haowei & Huang, Hongyan & Yan, Peigang, 2019. "Research of a combined power and cooling system based on fuel rotating cooling air turbine and organic Rankine cycle on hypersonic aircraft," Energy, Elsevier, vol. 189(C).
    16. Dang, Chaolei & Cheng, Kunlin & Xu, Jing & Fan, Junhao & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of a thermal management system based on hydrocarbon-fuel regenerative cooling technology for scramjets," Energy, Elsevier, vol. 285(C).
    17. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    18. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2024. "Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles," Applied Energy, Elsevier, vol. 359(C).
    19. Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
    20. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5020-:d:1182024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.