IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000692.html
   My bibliography  Save this article

Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles

Author

Listed:
  • Ma, Xiaofeng
  • Jiang, Peixue
  • Zhu, Yinhai

Abstract

The supercritical CO2 Brayton cycle has promising prospects for application in hypersonic vehicles owing to its performance and compactness. However, the extreme thermal environment in aircrafts and limited cold sources make the transient characteristics of the Brayton cycle unclear. In this study, dynamic models of supercritical CO2 Brayton cycle were established. The heat exchanger model was based on the supercritical moving boundary method proposed in our previous work and the finite volume method, whereas the modeling of the turbomachinery was based on the performance map approach. Proportional-integral-derivative (PID) controller modules were introduced to enable closed-loop control of various parameters to meet different working conditions. The transient characteristics of the heat exchanger and Brayton cycle model were validated using literature data. Dynamic models for both simple and recuperated layouts were developed to study the transient behavior in aerospace scenarios with sudden thermal load increases, cold-source limitations, and combined disturbances. Under the given conditions, results indicate that both sudden increases in thermal load and cold-source limitations cause a decrease in the thermodynamic performance, with a reduction in thermal efficiency of 0.7 and 2.2%, respectively. When these conditions were combined, the performance further deteriorated, with the thermal efficiency decreasing from 14.4 to 9.5%. This condition can result in compressor over speeding and failure of the PID controller. The simulation results for the two layouts show that the recuperated layout has a 34.8% higher power output at the cost of increasing the total weight by 29.7%. The dynamic models proposed in this study provide valuable insights into the behavior of Brayton cycle systems in hypersonic vehicles, aiding system design, evaluation, and control strategy development.

Suggested Citation

  • Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2024. "Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000692
    DOI: 10.1016/j.apenergy.2024.122686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    2. Pratt, Joseph W. & Klebanoff, Leonard E. & Munoz-Ramos, Karina & Akhil, Abbas A. & Curgus, Dita B. & Schenkman, Benjamin L., 2013. "Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes," Applied Energy, Elsevier, vol. 101(C), pages 776-796.
    3. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    4. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
    2. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
    3. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
    4. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    5. Luo, Qianqian & Li, Xingchen & Luo, Lei & Du, Wei & Yan, Han, 2024. "Multi-objective performance analysis of different SCO2 Brayton cycles on hypersonic vehicles," Energy, Elsevier, vol. 301(C).
    6. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    7. Dang, Chaolei & Cheng, Kunlin & Xu, Jing & Fan, Junhao & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of a thermal management system based on hydrocarbon-fuel regenerative cooling technology for scramjets," Energy, Elsevier, vol. 285(C).
    8. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    9. Liang Guo & Liping Pang & Jingquan Zhao & Xiaodong Yang, 2022. "Optimization of Power and Thermal Management System of Hypersonic Vehicle with Finite Heat Sink of Fuel," Energies, MDPI, vol. 15(15), pages 1-19, July.
    10. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    11. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    12. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    13. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    14. Xu, Qing & Li, Haowei & Feng, Yaoxun & Li, Xiaoning & Ling, Changming & Zhou, Chaoying & Qin, Jiang, 2020. "Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system," Energy, Elsevier, vol. 211(C).
    15. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    16. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    17. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    18. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    19. Dang, Chaolei & Xu, Jing & Chen, Zhichao & Cheng, Kunlin & Qin, Jiang & Liu, Guodong, 2024. "Comparative study of different layouts in the closed-Brayton-cycle-based segmented cooling thermal management system for scramjets," Energy, Elsevier, vol. 301(C).
    20. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.