An electricity supply system by recovering the waste heat of commercial aeroengine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128495
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- José Carlos Domínguez-Lozoya & Sergio Cuevas & David Roberto Domínguez & Raúl Ávalos-Zúñiga & Eduardo Ramos, 2021. "Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
- Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
- Abou Elmaaty, Talal M. & Kabeel, A.E. & Mahgoub, M., 2017. "Corrugated plate heat exchanger review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 852-860.
- Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
- Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
- Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
- Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
- Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
- Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
- Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
- Dang, Chaolei & Cheng, Kunlin & Xu, Jing & Fan, Junhao & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of a thermal management system based on hydrocarbon-fuel regenerative cooling technology for scramjets," Energy, Elsevier, vol. 285(C).
- Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
- Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
- Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
- Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
- Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
- Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
- Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2024. "Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles," Applied Energy, Elsevier, vol. 359(C).
- Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
- Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
- Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
- Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
- Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
- Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
More about this item
Keywords
Commercial aeroengine; Waste heat utilization; Closed brayton cycle; Electricity supply; Oil economics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.