IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3617-d1383198.html
   My bibliography  Save this article

Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion

Author

Listed:
  • Jean de Dieu Marcel Ufitikirezi

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Martin Filip

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Mohammad Ghorbani

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Tomáš Zoubek

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Pavel Olšan

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Roman Bumbálek

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Miroslav Strob

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Petr Bartoš

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
    Faculty of Education, University of South Bohemia in České Budějovice, Jeronýmova 10, 371 15 České Budějovice, Czech Republic)

  • Sandra Nicole Umurungi

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Yves Theoneste Murindangabo

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Aleš Heřmánek

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Ondřej Tupý

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Zbyněk Havelka

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Radim Stehlík

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Pavel Černý

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
    Faculty of Education, University of South Bohemia in České Budějovice, Jeronýmova 10, 371 15 České Budějovice, Czech Republic)

  • Luboš Smutný

    (Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

Abstract

The pursuit of sustainable energy production through the conversion of agricultural waste into different bioenergy resources is of paramount importance given its potential to mitigate environmental impact while meeting energy demands. In this review, a comprehensive overview of the technologies for the biochemical and thermochemical conversion of agricultural waste into bioenergy is provided. A summary of the process of its conversion into different bioenergy products such as biogas, bio-oil, and biofuel is provided, in addition to the potential advantages and challenges faced using different biomass conversion technologies. The review highlights the potential of agricultural waste valorization to address the current energy demand while at the same time contributing to environmental benefits and greenhouse gas emission reductions. Moreover, this review highlights some significant gaps for improvement. These include the challenges in the pretreatment of agricultural waste biomass in optimizing the conversion rates and lowering the required energy consumption throughout the process while enhancing both the quantity and quality of the output. Some recommendations are proposed to address the identified challenges. These include the need for further studies for a thorough assessment to evaluate the efficacity and sustainability of agricultural waste valorization technologies. Assessment methods such as life cycle assessment (LCA), life cycle analysis (LCA), net energy ratio (NER) calculations, life cycle costing (LCC), as well as techno-economic assessment (TEA), are recommended, together with collaboration among governments, farmers, and researchers, as well as the integration of cutting-edge technologies to enhance various aspects of agricultural waste, optimizing the conversion process, cost efficiency, time management, and labor requirements, consequently boosting the conversion efficiency and product quality.

Suggested Citation

  • Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3617-:d:1383198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azwifunimunwe Tshikovhi & Tshwafo Ellias Motaung, 2023. "Technologies and Innovations for Biomass Energy Production," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    3. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    4. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    5. Van de Beld, Bert & Holle, Elmar & Florijn, Jan, 2013. "The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications," Applied Energy, Elsevier, vol. 102(C), pages 190-197.
    6. Chen, Wei-Hsin & Huang, Ming-Yueh & Chang, Jo-Shu & Chen, Chun-Yen, 2015. "Torrefaction operation and optimization of microalga residue for energy densification and utilization," Applied Energy, Elsevier, vol. 154(C), pages 622-630.
    7. Subramanian, K.A. & Mathad, Vinaya C. & Vijay, V.K. & Subbarao, P.M.V., 2013. "Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer," Applied Energy, Elsevier, vol. 105(C), pages 17-29.
    8. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
    9. Ravenni, G. & Elhami, O.H. & Ahrenfeldt, J. & Henriksen, U.B. & Neubauer, Y., 2019. "Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250–800 °C," Applied Energy, Elsevier, vol. 241(C), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
    3. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    4. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    6. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    7. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    8. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    9. Lai, Long Wee & Idris, Ani, 2016. "Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk," Renewable Energy, Elsevier, vol. 99(C), pages 738-746.
    10. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    11. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    12. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
    13. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    14. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    15. Yue Zhang & Sigrid Kusch-Brandt & Shiyan Gu & Sonia Heaven, 2019. "Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing," Resources, MDPI, vol. 8(4), pages 1-24, October.
    16. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    17. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    18. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    19. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    20. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3617-:d:1383198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.