IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp913-922.html
   My bibliography  Save this article

Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor

Author

Listed:
  • Ruocco, Concetta
  • Palma, Vincenzo
  • Cortese, Marta
  • Martino, Marco

Abstract

Oxidative steam reforming of bioethanol has been investigated in a fluidized bed reactor under atmospheric pressure at 500 °C over Pt–Ni/CeO2–SiO2 and Ru–Ni/CeO2–SiO2 catalysts, prepared with a noble metal content in the range 0–3 wt%. A preliminary investigation of the bimetallic catalysts performance was performed under a simulated bioethanol/oxygen stream (C2H5OH:H2O:O2:Ar = 10:40:5:45) at 500 °C and WHSV = 61.7 h−1. Poor stability was recorded over the low-loaded samples of both the series and the highest ethanol conversion as well as H2 yield after 25 h of time-on-stream were recorded over the 2 Pt–10Ni/CeO2–SiO2 catalyst. In fact, a growth in the content of the noble metal assured an improvement in terms of resistance towards deactivation. However, a further increase up to 2 wt% was detrimental for both Pt and Rh-based catalysts. The most durable catalyst (2 Pt–10Ni) was additionally tested under a raw bioethanol stream (commercial fuel grade bioethanol) for 100 h at 4.1 h−1: complete conversion and a stable H2 yield above 50% was obtained; the characterization of the spent catalyst mainly revealed the formation of filamentous coke, which is expected to cause a low extent of deactivation. As a result, no apparent activity loss was observed and the bimetallic catalyst appeared a promising candidate for reforming of crude ethanol.

Suggested Citation

  • Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:913-922
    DOI: 10.1016/j.renene.2021.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    2. Palma, Vincenzo & Ruocco, Concetta & Ricca, Antonio, 2018. "Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation," Renewable Energy, Elsevier, vol. 125(C), pages 356-364.
    3. Uusitalo, V. & Havukainen, J. & Soukka, R. & Väisänen, S. & Havukainen, M. & Luoranen, M., 2015. "Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector – A case study in Finland," Renewable Energy, Elsevier, vol. 80(C), pages 479-488.
    4. Kostyniuk, Andrii & Bajec, David & Likozar, Blaž, 2021. "Catalytic hydrogenation, hydrocracking and isomerization reactions of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor," Renewable Energy, Elsevier, vol. 167(C), pages 409-424.
    5. Greluk, Magdalena & Rotko, Marek & Turczyniak-Surdacka, Sylwia, 2020. "Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming," Renewable Energy, Elsevier, vol. 155(C), pages 378-395.
    6. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    7. Chen, Dong & Wang, Wenju & Liu, Chenlong, 2020. "Hydrogen production through glycerol steam reforming over beehive-biomimetic graphene-encapsulated nickel catalysts," Renewable Energy, Elsevier, vol. 145(C), pages 2647-2657.
    8. Zhang, Zhanming & Zhang, Lijun & Liu, Fang & Sun, Yifan & Shao, Yuewen & Sun, Kai & Zhang, Shu & Liu, Qing & Hu, Guangzhi & Hu, Xun, 2020. "Tailoring the surface properties of Ni/SiO2 catalyst with sulfuric acid for enhancing the catalytic efficiency for steam reforming of guaiacol," Renewable Energy, Elsevier, vol. 156(C), pages 423-439.
    9. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    10. Wang, Yishuang & Liang, Defang & Wang, Chunsheng & Chen, Mingqiang & Tang, Zhiyuan & Hu, Jiaxin & Yang, Zhonglian & Zhang, Han & Wang, Jun & Liu, Shaomin, 2020. "Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol," Renewable Energy, Elsevier, vol. 160(C), pages 597-611.
    11. Yamamoto, Hiromi & Fujioka, Hanako & Okano, Kunihiko, 2021. "Cost analysis of stable electric and hydrogen energy supplies derived from 100% variable renewable resources systems," Renewable Energy, Elsevier, vol. 178(C), pages 1165-1173.
    12. An, Lu & Dong, Changqing & Yang, Yongping & Zhang, Junjiao & He, Lei, 2011. "The influence of Ni loading on coke formation in steam reforming of acetic acid," Renewable Energy, Elsevier, vol. 36(3), pages 930-935.
    13. Jing, Fangli & Liu, Shuangfei & Wang, Rong & Li, Xinyi & Yan, Zhao & Luo, Shizhong & Chu, Wei, 2020. "Hydrogen production through glycerol steam reforming over the NiCexAl catalysts," Renewable Energy, Elsevier, vol. 158(C), pages 192-201.
    14. Larimi, Afsanehsadat & Khorasheh, Farhad, 2018. "Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts," Renewable Energy, Elsevier, vol. 128(PA), pages 188-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escalante, Yelisbeth & Villagran‒Olivares, Alejandra C. & Furlong, Octavio J. & Nazzarro, Marcelo S. & Tarditi, Ana M. & Barroso, M. Noelia, 2024. "High performance nickel structured catalysts prepared using EDTA for hydrogen production," Renewable Energy, Elsevier, vol. 232(C).
    2. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escalante, Yelisbeth & Villagran‒Olivares, Alejandra C. & Furlong, Octavio J. & Nazzarro, Marcelo S. & Tarditi, Ana M. & Barroso, M. Noelia, 2024. "High performance nickel structured catalysts prepared using EDTA for hydrogen production," Renewable Energy, Elsevier, vol. 232(C).
    2. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    4. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    5. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Singh, Piyush Pratap & Jaswal, Anurag & Nirmalkar, Neelkanth & Mondal, Tarak, 2023. "Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen pro," Renewable Energy, Elsevier, vol. 207(C), pages 575-587.
    7. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    8. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    9. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    10. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Sara Domínguez & Bernay Cifuentes & Felipe Bustamante & Nelly M. Cantillo & César L. Barraza-Botet & Martha Cobo, 2022. "On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    12. Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
    13. Wang, Linhao & Lei, Dongqiang & Ren, Puning & Lv, Yue & Luo, Nengchao & Wang, Zhifeng, 2024. "Experimental study on concentrated light photothermal catalytic glycerol for hydrogen production using a novel linear concentrated light flow reactor," Renewable Energy, Elsevier, vol. 231(C).
    14. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    15. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    16. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    17. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    19. Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:913-922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.