Hydrogen production in liquid water by femtosecond laser-induced plasma
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.04.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
- Bicer, Yusuf & Sprotte, André Felipe Vitorio & Dincer, Ibrahim, 2017. "Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications," Applied Energy, Elsevier, vol. 197(C), pages 169-182.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
- Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
- Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
- Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
- Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
- Zhao, Ning & Wang, Jiangjiang, 2024. "Solar full spectrum management in low and medium temperature light-driven chemical hydrogen synthesis - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
- Qu, Wanjun & Hong, Hui & Li, Qiang & Xuan, Yimin, 2018. "Co-producing electricity and solar syngas by transmitting photovoltaics and solar thermochemical process," Applied Energy, Elsevier, vol. 217(C), pages 303-313.
- Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
- Jiali Wang & Jiajun Lu & Xiuwen Zhao & Guichao Hu & Xiaobo Yuan & Junfeng Ren, 2023. "Two-dimensional Janus AsXY (X = Se, Te; Y = Br, I) monolayers for photocatalytic water splitting," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-10, February.
- Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
More about this item
Keywords
Femtosecond laser plasma; Plasma-water interaction; Water splitting; Hydrogen production; Hydrogen peroxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:24-31. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.