IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp261-268.html
   My bibliography  Save this article

Hydrogen production from ethanol using dielectric barrier discharge

Author

Listed:
  • Ulejczyk, Bogdan
  • Nogal, Łukasz
  • Młotek, Michał
  • Krawczyk, Krzysztof

Abstract

This article presents the process of hydrogen production from a mixture of water and ethanol in a plasma reactor. No additional gases facilitating the formation of plasma were introduced into the reactor. The highest value of total conversion of ethanol was 71%. The cooled gases contained from 48 to 56% of hydrogen and a lot of carbon monoxide from 17 to 21%. Methane, ethylene, ethane and carbon dioxide were present in smaller amounts. Soot formed in the process was removed from the reactor in the gas stream and did not interfere with the operation of the reactor. The best energy yield for hydrogen production was 6.15 mol(H2) h−1.

Suggested Citation

  • Ulejczyk, Bogdan & Nogal, Łukasz & Młotek, Michał & Krawczyk, Krzysztof, 2019. "Hydrogen production from ethanol using dielectric barrier discharge," Energy, Elsevier, vol. 174(C), pages 261-268.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:261-268
    DOI: 10.1016/j.energy.2019.02.180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930386X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henryka Danuta Stryczewska & Mariusz Adam Stępień & Oleksandr Boiko, 2022. "Plasma and Superconductivity for the Sustainable Development of Energy and the Environment," Energies, MDPI, vol. 15(11), pages 1-30, June.
    2. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    3. Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
    4. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    5. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    6. Wu, Zuliang & Zhou, Weili & Hao, Xiaodong & Zhang, Xuming, 2019. "Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels," Energy, Elsevier, vol. 189(C).
    7. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:261-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.