IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2554-d784561.html
   My bibliography  Save this article

Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling

Author

Listed:
  • Yuxin Zhou

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Zhengkun Wang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Zongfa Xie

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Yanan Wang

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China
    Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

Abstract

Lithium-ion batteries will generate a large amount of heat during high-rate charging and discharging. By transferring the heat to the environment in time, the batteries can be kept in a suitable temperature range. This allows them to work normally, prolongs their cycle life, and reduces the risk of thermal runaway. Immersion cooling is a simple and efficient thermal management method. In this paper, a battery thermal management system (BTMS) with immersion cooling was designed by immersing the lithium-ion cells in the non-conductive coolant—dimethyl silicone oil. The electric–thermal coupled model was adopted to obtain the heat production and temperature distribution of the cell during discharging, and the performance of the system was obtained by numerical calculation. It was found that, compared with natural cooling, immersion cooling could significantly reduce both the maximum temperature (MAT) of the cell and the temperature of the tabs during the 3C discharging process. However, the maximum temperature difference (MATD) of the cell was significantly increased. To solve this problem, the effects of the flow rate, viscosity, specific heat capacity, and thermal conductivity of the coolant on the performance of immersion cooling were further investigated and discussed, including the MAT and MATD of the cell, and the pressure drop of the coolant. The method and results could provide references for the design and application of the BTMS with immersion cooling in the future.

Suggested Citation

  • Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2554-:d:784561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    2. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    3. Prahit Dubey & Gautam Pulugundla & A. K. Srouji, 2021. "Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules," Energies, MDPI, vol. 14(5), pages 1-19, February.
    4. Ankur Bhattacharjee & Rakesh K. Mohanty & Aritra Ghosh, 2020. "Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions," Energies, MDPI, vol. 13(21), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhao Dong & Xipo Lu & Yang Sun & Vladislav Mitin & Huaping Xu & Wei Kong, 2022. "Design of Battery Thermal Management System with Considering the Longitudinal and Transverse Temperature Difference," Energies, MDPI, vol. 15(19), pages 1-13, October.
    2. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Liu, Jiahao & Chen, Hao & Yang, Manjiang & Huang, Silu & Wang, Kan, 2024. "Comparative study of natural ester oil and mineral oil on the applicability of the immersion cooling for a battery module," Renewable Energy, Elsevier, vol. 224(C).
    4. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
    5. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    3. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    6. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    7. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    9. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    10. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    11. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    12. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    13. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    16. Diwakar Karuppiah & Rajkumar Palanisamy & Arjunan Ponnaiah & Wei-Ren Liu & Chia-Hung Huang & Subadevi Rengapillai & Sivakumar Marimuthu, 2020. "Eggshell-Membrane-Derived Carbon Coated on Li 2 FeSiO 4 Cathode Material for Li-Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-13, February.
    17. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Khaled Itani & Alexandre De Bernardinis, 2023. "Review on New-Generation Batteries Technologies: Trends and Future Directions," Energies, MDPI, vol. 16(22), pages 1-29, November.
    20. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2554-:d:784561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.