IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924015289.html
   My bibliography  Save this article

BatteryFOAM: A comprehensive electrochemical-electrical-thermal solver with OpenFOAM for computational battery dynamics

Author

Listed:
  • Ding, Yan
  • Lu, Li
  • Zhang, Huangwei

Abstract

This study presents a new development for the multi-physics simulation of lithium-ion batteries (LIBs), leveraging the open-source Computational Fluid Dynamics (CFD) software, OpenFOAM®. A new battery modelling framework, BatteryFOAM solver, is implemented based on the semi-empirical electrochemical sub-model proposed by Newman, Tiedemann, Gu, and Kim (NTGK). For the lumped-solid battery model, BatteryFOAM employs the finite-volume method with polyhedral mesh to predict the working voltage, transfer current, temperature, and heat release rate for LIBs under a constant discharge current rate (DCR). This solver incorporates three sub-models: (1) semi-empirical equations governing the open circuit voltage, electrochemical conductance, and polarization expressions for the transfer current in the electrochemical model; (2) the electrical model, which includes the potential Poisson-type equations, along with the application of Taylor expansion of boundary condition to address the ill-posed positive electrode potential partial equation; and (3) the thermal model including energy conservation equations considering the contributions from ohmic, electrochemical reversible, and polarization heat. To comprehensively verify and validate the solver accuracy and implementation, this study compares the results against the experimental, simulation and theoretical results. The results show that the battery working voltage is in good agreement with the experimental results at 0.3-6C and the relative error of transfer current density is <0.06% under 6C. By coupling the thermal model, both the simulation and experiment temperature of the battery center reach up to 320 K at 90% DOD and 3C. These demonstrate that BatteryFOAM reliably predicts LIB real-time characteristics at different DCRs. Besides, the BatteryFOAM can be further flexibly developed by coupling other models, such as side reactions and internal short circuit, based on this framework.

Suggested Citation

  • Ding, Yan & Lu, Li & Zhang, Huangwei, 2024. "BatteryFOAM: A comprehensive electrochemical-electrical-thermal solver with OpenFOAM for computational battery dynamics," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015289
    DOI: 10.1016/j.apenergy.2024.124145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. He, Tengfei & Zhang, Teng & Wang, Zhirong & Cai, Qiong, 2022. "A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process," Applied Energy, Elsevier, vol. 313(C).
    3. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    5. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
    6. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
    7. Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
    8. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Huang, Zhiliang & Wang, Huaixing & Yang, Tongguang & Chen, Zeye & Li, Hangyang & Chen, Jie & Wu, Shengben, 2023. "An efficient multi-state evaluation approach for lithium-ion pouch cells under dynamic conditions in pressure/current/temperature," Applied Energy, Elsevier, vol. 340(C).
    3. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    4. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    6. Meilin Gong & Jiatao Chen & Jianming Chen & Xiaohuan Zhao, 2024. "Study on Discharge Characteristic Performance of New Energy Electric Vehicle Batteries in Teaching Experiments of Safety Simulation under Different Operating Conditions," Energies, MDPI, vol. 17(12), pages 1-14, June.
    7. Van-Tinh Huynh & Kyoungsik Chang & Sang-Wook Lee, 2023. "Numerical Investigation of the Thermal Performance of a Hybrid Phase Change Material and Forced Air Cooling System for a Three-Cell Lithium-Ion Battery Module," Energies, MDPI, vol. 16(24), pages 1-19, December.
    8. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    9. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    10. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    11. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    12. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    13. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    14. Xie, Yanmin & Xu, Jun & Jin, Chengwei & Jia, Zhenyu & Mei, Xuesong, 2024. "A novel reduced-order electrochemical model of lithium-ion batteries with both high fidelity and real-time applicability," Energy, Elsevier, vol. 306(C).
    15. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    16. Ma, Ying & Yang, Heng & Zuo, Hongyan & Ma, Yi & Zuo, Qingsong & Chen, Ying & He, Xiaoxiang & Wei, Rongrong, 2023. "Three-dimensional EG@MOF matrix composite phase change materials for high efficiency battery cooling," Energy, Elsevier, vol. 278(C).
    17. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    18. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    19. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    20. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.