IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p786-d319182.html
   My bibliography  Save this article

Eggshell-Membrane-Derived Carbon Coated on Li 2 FeSiO 4 Cathode Material for Li-Ion Batteries

Author

Listed:
  • Diwakar Karuppiah

    (120 Energy material Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Rajkumar Palanisamy

    (120 Energy material Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Arjunan Ponnaiah

    (120 Energy material Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Wei-Ren Liu

    (Department of Chemical Engineering, R&D Center for Membrane Technology, Research Center for Circular Economy, Chung-Yuan Christian University, Chung-Li 32023, Taiwan)

  • Chia-Hung Huang

    (Metal Industries Research and Development Centre, Kaohsiung 81160, Taiwan)

  • Subadevi Rengapillai

    (120 Energy material Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Sivakumar Marimuthu

    (120 Energy material Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

Abstract

Lithium iron orthosilicate (LFS) cathode can be prepared via the polyol-assisted ball milling method with the incorporation of carbon derived from eggshell membrane (ESM) for improving inherent poor electronic conduction. The powder X-ray diffraction (XRD) pattern confirmed the diffraction peaks without any presence of further impure phase. Overall, 9 wt.% of carbon was loaded on the LFS, which was identified using thermogravimetric analysis. The nature of carbon was described using parameters such as monolayer, and average surface area was 53.5 and 24 m 2 g −1 with the aid of Langmuir and Brunauer–Emmett–Teller (BET) surface area respectively. The binding energy was observed at 285.66 eV for C–N owing to the nitrogen content in eggshell membrane, which provides more charge carriers for conduction. Transmission electron microscopy (TEM) images clearly show the carbon coating on the LFS, the porous nature of carbon, and the atom arrangements. From the cyclic voltammetry (CV) curve, the ratio of the anodic to the cathodic peak current was calculated as 1.03, which reveals that the materials possess good reversibility. Due to the reversibility of the redox mechanism, the material exhibits discharge specific capacity of 194 mAh g −1 for the first cycle, with capacity retention and an average coulombic efficiency of 94.7% and 98.5% up to 50 cycles.

Suggested Citation

  • Diwakar Karuppiah & Rajkumar Palanisamy & Arjunan Ponnaiah & Wei-Ren Liu & Chia-Hung Huang & Subadevi Rengapillai & Sivakumar Marimuthu, 2020. "Eggshell-Membrane-Derived Carbon Coated on Li 2 FeSiO 4 Cathode Material for Li-Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:786-:d:319182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. By Lung-Hao Hu & Feng-Yu Wu & Cheng-Te Lin & Andrei N. Khlobystov & Lain-Jong Li, 2013. "Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    3. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    4. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    5. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    6. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    7. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    9. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    10. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    11. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    12. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    13. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    14. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    15. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    16. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    17. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    18. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    19. Xuejun Zheng & Shaorong Wang & Xin Su & Mengmeng Xiao & Zia Ullah & Xin Hu & Chang Ye, 2021. "Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs," Energies, MDPI, vol. 14(16), pages 1-20, August.
    20. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:786-:d:319182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.