IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1259-d505649.html
   My bibliography  Save this article

Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules

Author

Listed:
  • Prahit Dubey

    (Romeo Power Technology, 4380 Ayers Ave, Vernon, CA 90058, USA)

  • Gautam Pulugundla

    (Romeo Power Technology, 4380 Ayers Ave, Vernon, CA 90058, USA)

  • A. K. Srouji

    (Romeo Power Technology, 4380 Ayers Ave, Vernon, CA 90058, USA)

Abstract

The current paper evaluates the thermal performance of immersion cooling for an Electric Vehicle (EV) battery module comprised of NCA-chemistry based cylindrical 21700 format Lithium-ion cells. Efficacy of immersion cooling in improving maximum cell temperature, cell’s temperature gradient, cell-to-cell temperature differential, and pressure drop in the module are investigated by direct comparison with a cold-plate-cooled battery module. Parametric analyses are performed at different module discharge C-rates and coolant flow rates to understand the sensitivity of each cooling strategy to important system performance parameters. The entire numerical analysis is performed using a validated 3 D time-accurate Computational Fluid Dynamics (CFD) methodology in STAR-CCM+. Results demonstrate that immersion cooling due its higher thermal conductance leads to a lower maximum cell temperature and lower temperature gradients within the cells at high discharge rates. However, a higher rate of heat rejection and poor thermal properties of the dielectric liquid results in a much higher temperature non-uniformity across the module. At lower discharge rates, the two cooling methods show similar thermal performance. Additionally, owing to the lower viscosity and density of the considered dielectric liquid, an immersion-cooled battery module performs significantly better than the cold-plate-cooled module in terms of both coolant pressure drop.

Suggested Citation

  • Prahit Dubey & Gautam Pulugundla & A. K. Srouji, 2021. "Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules," Energies, MDPI, vol. 14(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1259-:d:505649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    2. In-Ho Cho & Pyeong-Yeon Lee & Jong-Hoon Kim, 2019. "Analysis of the Effect of the Variable Charging Current Control Method on Cycle Life of Li-ion Batteries," Energies, MDPI, vol. 12(15), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökhan Sevilgen & Harun Dursun & Muhsin Kılıç, 2023. "Experimental and Numerical Investigations on the Thermal Performance of Three Different Cold Plates Designed for the Electrical Vehicle Battery Module," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    2. Liu, Qian & Liu, Yingying & Zhang, Mingjie & Wang, Shuping & Li, Wenlong & Zhu, Xiaoqing & Ju, Xing & Xu, Chao & Wei, Bin, 2024. "Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling," Energy, Elsevier, vol. 298(C).
    3. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    4. Liu, Jiahao & Chen, Hao & Yang, Manjiang & Huang, Silu & Wang, Kan, 2024. "Comparative study of natural ester oil and mineral oil on the applicability of the immersion cooling for a battery module," Renewable Energy, Elsevier, vol. 224(C).
    5. Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. Liu, Qian & Sun, Chen & Zhang, Jingshu & Shi, Qianlei & Li, Kaixuan & Yu, Boxu & Xu, Chao & Ju, Xing, 2023. "The electro-thermal equalization behaviors of battery modules with immersion cooling," Applied Energy, Elsevier, vol. 351(C).
    7. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    8. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    4. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    5. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    6. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    7. Achraf Saadaoui & Mohammed Ouassaid & Mohamed Maaroufi, 2023. "Overview of Integration of Power Electronic Topologies and Advanced Control Techniques of Ultra-Fast EV Charging Stations in Standalone Microgrids," Energies, MDPI, vol. 16(3), pages 1-21, January.
    8. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    9. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    11. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    13. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    14. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    15. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    16. Zhihao Wang & Xuan Tang & Youhang Zhou & Hai Huang & Haifeng Dai, 2024. "Experimental and Modeling Analysis of Thermal Runaway for LiNi 0.5 Mn 0.3 Co 0.2 O 2 /Graphite Pouch Cell Triggered by Surface Heating," Energies, MDPI, vol. 17(4), pages 1-16, February.
    17. Zhiguo Tang & Anqi Song & Shoucheng Wang & Jianping Cheng & Changfa Tao, 2020. "Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module," Energies, MDPI, vol. 13(4), pages 1-18, February.
    18. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    19. Hamidreza Behi & Danial Karimi & Rekabra Youssef & Mahesh Suresh Patil & Joeri Van Mierlo & Maitane Berecibar, 2021. "Comprehensive Passive Thermal Management Systems for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-15, June.
    20. Mao, Binbin & Zhao, Chunpeng & Chen, Haodong & Wang, Qingsong & Sun, Jinhua, 2021. "Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1259-:d:505649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.