IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7448-d938252.html
   My bibliography  Save this article

Design of Battery Thermal Management System with Considering the Longitudinal and Transverse Temperature Difference

Author

Listed:
  • Junhao Dong

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Xipo Lu

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Yang Sun

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Vladislav Mitin

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    School of Mechanics and Energy, Mordovia State University, 430005 Saransk, Russia)

  • Huaping Xu

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Wei Kong

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

Abstract

For a bottom-liquid-cooled battery thermal management system (BTMS), the small contact area between the battery bottom and the cold plate leads to a large temperature difference in the battery height direction. In addition, the increase in coolant temperature from the inlet to the outlet results in an excessive temperature difference in the battery module in the coolant flow direction. In order to solve the above issues, a wavy channel was first designed to strengthen the heat exchange between the battery bottom and the cold plate. The maximum battery module temperature for the wavy-channel design is 29.61 °C, which is a reduction of 1.75 °C compared to the straight-channel design. Then, the transverse temperature difference in the battery module was reduced by introducing a composite-channel design. Finally, on the basis of the composite channel, phase change material (PCM) was added to the battery’s top surface to reduce the temperature difference in the battery height direction. The results show that the maximum temperature and maximum temperature difference in the battery module of the composite-channel/PCM design proposed in this study are reduced by 6.8% and 41%, respectively, compared with the conventional straight-channel design.

Suggested Citation

  • Junhao Dong & Xipo Lu & Yang Sun & Vladislav Mitin & Huaping Xu & Wei Kong, 2022. "Design of Battery Thermal Management System with Considering the Longitudinal and Transverse Temperature Difference," Energies, MDPI, vol. 15(19), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7448-:d:938252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    2. Chen, Yiming & Chen, Kai & Dong, Yuan & Wu, Xiaoling, 2022. "Bidirectional symmetrical parallel mini-channel cold plate for energy efficient cooling of large battery packs," Energy, Elsevier, vol. 242(C).
    3. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    4. Bo Li & Wenhao Wang & Shaoyi Bei & Zhengqiang Quan, 2022. "Analysis of Heat Dissipation Performance of Battery Liquid Cooling Plate Based on Bionic Structure," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    5. Mohammad Joula & Savas Dilibal & Gonca Mafratoglu & Josiah Owusu Danquah & Mohammad Alipour, 2022. "Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-ion Batteries," Energies, MDPI, vol. 15(12), pages 1-16, June.
    6. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    7. Meiwei Wang & Tzu-Chen Hung & Huan Xi, 2021. "Numerical Study on Performance Enhancement of the Air-Cooled Battery Thermal Management System by Adding Parallel Plates," Energies, MDPI, vol. 14(11), pages 1-17, May.
    8. Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
    9. Ziming Xu & Jun Xu & Zhechen Guo & Haitao Wang & Zheng Sun & Xuesong Mei, 2022. "Design and Optimization of a Novel Microchannel Battery Thermal Management System Based on Digital Twin," Energies, MDPI, vol. 15(4), pages 1-20, February.
    10. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    2. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    3. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    4. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Wu, Nan & Ye, Xiaolin & Li, Junjie & Lin, Boshen & Zhou, Xuelong & Yu, Bin, 2021. "Passive thermal management systems employing hydrogel for the large-format lithium-ion cell: A systematic study," Energy, Elsevier, vol. 231(C).
    7. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    10. Bamdezh, M.A. & Molaeimanesh, G.R., 2024. "The effect of active and passive battery thermal management systems on energy consumption, battery degradation, and carbon emissions of an electric vehicle," Energy, Elsevier, vol. 304(C).
    11. Lalan K. Singh & Anoop K. Gupta, 2023. "Hybrid cooling-based lithium-ion battery thermal management for electric vehicles," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3627-3648, April.
    12. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    13. Li, Song & Zhang, Han & Li, Shuo & Wang, Jiaqi & Wang, Qiuwang & Cheng, Zhilong, 2024. "Advances in hierarchically porous materials: Fundamentals, preparation and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    14. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    15. Nguyen, T.D. & Deng, J. & Robert, B. & Chen, W. & Siegmund, T., 2022. "Experimental investigation on cooling of prismatic battery cells through cell integrated features," Energy, Elsevier, vol. 244(PA).
    16. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    17. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    18. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7448-:d:938252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.