IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002891.html
   My bibliography  Save this article

Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles

Author

Listed:
  • Yang, Jie
  • Yu, Fan
  • Ma, Kai
  • Yang, Bo
  • Yue, Zhiyuan

Abstract

In this paper, a novel model of electric-hydrogen integrated charging station (ICS) is proposed, which is composed of battery swapping station (BSS) and hydrogen station (HS). The BSS model, which mainly includes user adaptive response model, battery allocation and scheduling strategy, is established to realize the reasonable management and allocation of batteries. The HS model mainly includes hydrogen production module, hydrogen storage module, hydrogen charging module, fuel cell module and hydrogen scheduling strategy to optimize scheduling from hydrogen production to use. In addition, the BSS can provide energy for HS, and both BSS and HS can feed back the stored energy to the power system during peak load, which is beneficial to the stable operation of the power system. Simulation shows the rationality and correctness of the proposed optimization model. The proposed model and optimization strategy can improve the flexibility and economy of ICS, and help the power system to cut peak and fill valley.

Suggested Citation

  • Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002891
    DOI: 10.1016/j.renene.2024.120224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    2. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    3. Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
    4. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    5. Zhang, Cong & Greenblatt, Jeffery B. & Wei, Max & Eichman, Josh & Saxena, Samveg & Muratori, Matteo & Guerra, Omar J., 2020. "Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions," Applied Energy, Elsevier, vol. 278(C).
    6. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    7. Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2019. "Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector," Energy, Elsevier, vol. 173(C), pages 706-720.
    8. Ramadhani, Farah & Hussain, M.A. & Mokhlis, Hazlie & Fazly, Muhamad & Ali, Jarinah Mohd., 2019. "Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles," Applied Energy, Elsevier, vol. 238(C), pages 1373-1388.
    9. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    10. Han, Xiaojuan & Ji, Tianming & Zhao, Zekun & Zhang, Hao, 2015. "Economic evaluation of batteries planning in energy storage power stations for load shifting," Renewable Energy, Elsevier, vol. 78(C), pages 643-647.
    11. Hafez, Omar & Bhattacharya, Kankar, 2017. "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Elsevier, vol. 107(C), pages 576-589.
    12. Shojaabadi, Saeed & Abapour, Saeed & Abapour, Mehdi & Nahavandi, Ali, 2016. "Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties," Renewable Energy, Elsevier, vol. 99(C), pages 237-252.
    13. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    14. Schröder, M. & Abdin, Z. & Mérida, W., 2020. "Optimization of distributed energy resources for electric vehicle charging and fuel cell vehicle refueling," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Zhang, Xiaofeng & Yan, Renshi & Zeng, Rong & Zhu, Ruilin & Kong, Xiaoying & He, Yecong & Li, Hongqiang, 2022. "Integrated performance optimization of a biomass-based hybrid hydrogen/thermal energy storage system for building and hydrogen vehicles," Renewable Energy, Elsevier, vol. 187(C), pages 801-818.
    3. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    4. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    5. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    6. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    7. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    8. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    9. Tabandeh, Abbas & Hossain, M.J. & Li, Li, 2022. "Integrated multi-stage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles," Applied Energy, Elsevier, vol. 319(C).
    10. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    12. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    13. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Longoria, Genaro & Lynch, Muireann Á. & Devine, Mel & Curtis, John, 2022. "Model of strategic electrolysis firms in energy, ancillary services and hydrogen markets," Papers WP734, Economic and Social Research Institute (ESRI).
    15. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    16. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    18. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2016. "Enhancing the design of battery charging controllers for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 646-655.
    19. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2017. "The feasibility of solar parking lots for electric vehicles," Energy, Elsevier, vol. 140(P1), pages 1182-1197.
    20. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.