IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2436-d779970.html
   My bibliography  Save this article

Control of a Three-Phase Current Source Rectifier for H 2 Storage Applications in AC Microgrids

Author

Listed:
  • Quentin Combe

    (LEMTA, Université de Lorraine, 2 Avenue de la Foret de Haye, 54500 Vandoeuvre-les-Nancy, France
    These authors contributed equally to this work.)

  • Alireza Abasian

    (LEMTA, Université de Lorraine, 2 Avenue de la Foret de Haye, 54500 Vandoeuvre-les-Nancy, France
    These authors contributed equally to this work.)

  • Serge Pierfederici

    (LEMTA, Université de Lorraine, 2 Avenue de la Foret de Haye, 54500 Vandoeuvre-les-Nancy, France
    These authors contributed equally to this work.)

  • Mathieu Weber

    (LEMTA, Université de Lorraine, 2 Avenue de la Foret de Haye, 54500 Vandoeuvre-les-Nancy, France
    These authors contributed equally to this work.)

  • Stéphane Dufour

    (LEMTA, Université de Lorraine, 2 Avenue de la Foret de Haye, 54500 Vandoeuvre-les-Nancy, France
    These authors contributed equally to this work.)

Abstract

The share of electrical energy from renewable sources has increased considerably in recent years in an attempt to reduce greenhouse gas emissions. To mitigate the uncertainties of these sources and to balance energy production with consumption, an energy storage system (ESS) based on water electrolysis to produce hydrogen is studied. It can be applied to AC microgrids, where several renewable energy sources and several loads may be connected, which is the focus of the study. When excess electricity production is converted into hydrogen via water electrolysis, low DC voltages and high currents are applied, which needs specific power converters. The use of a three-phase, buck-type current source converter, in a single conversion stage, allows for an adjustable DC voltage to be obtained at the terminals of the electrolyzer from a three-phase AC microgrid. The voltage control is preferred to the current control in order to improve the durability of the system. The classical control of the buck-type rectifier is generally done using two loops that correspond only to the control of its output variables. The lack of control of the input variables may generate oscillations of the grid current. Our contribution in this article is to propose a new control for the buck-type rectifier that controls both the input and output variables of the converter to avoid these grid current oscillations, without the use of active damping methods. The suggested control method is based on an approach using the flatness properties of differential systems: it ensures the large-signal stability of the converter. The proposed control shows better results than the classical control, especially in oscillation mitigation and dynamic performances with respect to the rejection of disturbances caused by a load step.

Suggested Citation

  • Quentin Combe & Alireza Abasian & Serge Pierfederici & Mathieu Weber & Stéphane Dufour, 2022. "Control of a Three-Phase Current Source Rectifier for H 2 Storage Applications in AC Microgrids," Energies, MDPI, vol. 15(7), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2436-:d:779970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    2. Guillermo Valencia & Aldair Benavides & Yulineth Cárdenas, 2019. "Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region," Energies, MDPI, vol. 12(11), pages 1-19, June.
    3. Damien Guilbert & Gianpaolo Vitale, 2020. "Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers," Energies, MDPI, vol. 13(5), pages 1-18, March.
    4. Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
    5. Speckmann, Friedrich-W. & Bintz, Steffen & Birke, Kai Peter, 2019. "Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation," Applied Energy, Elsevier, vol. 250(C), pages 855-863.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    5. Hosseini, Seyed Amir & Abyaneh, Hossein Askarian & Sadeghi, Seyed Hossein Hesamedin & Razavi, Farzad & Nasiri, Adel, 2016. "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 174-186.
    6. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    7. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    8. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    9. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    10. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    11. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    12. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    13. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    15. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    16. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    17. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    18. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    19. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    20. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2436-:d:779970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.