IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp399-413.html
   My bibliography  Save this article

Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data

Author

Listed:
  • Gulin, Marko
  • Pavlović, Tomislav
  • Vašak, Mario

Abstract

In this paper we develop and verify a static model for a photovoltaic array power production prediction by integrating manufacturers’ and on-line data. The static model is a fundamental part of dynamic models that are used to predict the photovoltaic array power production along a prediction horizon, and it is important to assess its limit performance to (i) reach maximum accuracy in the power production prediction, and to (ii) enable monitoring of the photovoltaic plant for alerting the owner in the case of unexpectedly low performance. The static model is developed in two subsequent steps: (i) power production model parameters are identified on manufacturers’ data, and (ii) a model corrector is identified on on-line solar irradiance and the photovoltaic array temperature data, which significantly improves accuracy of the static power production model compared to the model identified on manufacturers’ data only. Verification is performed on measurements of solar irradiance components, the PV array temperature and the output power during a 17-month time period. The proposed combination of the model initialization with manufacturers’ data and on-line data-based correction shows very high model accuracy, and enables adaptation to different system setups. It also incorporates robustness to systematic solar irradiance prediction errors.

Suggested Citation

  • Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:399-413
    DOI: 10.1016/j.renene.2016.05.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fathabadi, Hassan, 2015. "Lambert W function-based technique for tracking the maximum power point of PV modules connected in various configurations," Renewable Energy, Elsevier, vol. 74(C), pages 214-226.
    2. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    3. De Felice, Matteo & Petitta, Marcello & Ruti, Paolo M., 2015. "Short-term predictability of photovoltaic production over Italy," Renewable Energy, Elsevier, vol. 80(C), pages 197-204.
    4. Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
    5. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    6. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    7. Deihimi, M.H. & Naghizadeh, R.A. & Meyabadi, A. Fattahi, 2016. "Systematic derivation of parameters of one exponential model for photovoltaic modules using numerical information of data sheet," Renewable Energy, Elsevier, vol. 87(P1), pages 676-685.
    8. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    9. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    10. Milstein, Irena & Tishler, Asher, 2015. "Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets," Resource and Energy Economics, Elsevier, vol. 41(C), pages 70-90.
    11. David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
    12. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    13. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    14. Wu, Yujie & Wang, Jianzhou, 2016. "A novel hybrid model based on artificial neural networks for solar radiation prediction," Renewable Energy, Elsevier, vol. 89(C), pages 268-284.
    15. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    16. Gulin, Marko & Vašak, Mario & Perić, Nedjeljko, 2013. "Dynamical optimal positioning of a photovoltaic panel in all weather conditions," Applied Energy, Elsevier, vol. 108(C), pages 429-438.
    17. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    18. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    3. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    4. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    5. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    6. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    7. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    8. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    9. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    10. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    11. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    12. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    13. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    14. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    15. WenBo Xiao & Gina Nazario & HuaMing Wu & HuaMing Zhang & Feng Cheng, 2017. "A neural network based computational model to predict the output power of different types of photovoltaic cells," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-8, September.
    16. François, B. & Hingray, B. & Raynaud, D. & Borga, M. & Creutin, J.D., 2016. "Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix," Renewable Energy, Elsevier, vol. 87(P1), pages 686-696.
    17. Tommi Ekholm & Vilma Virasjoki, 2021. "Pricing and Competition with 100% Variable Renewable Energy and Storage," The Energy Journal, , vol. 42(1_suppl), pages 1-18, June.
    18. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    19. Qiwei Li & Jiaxuan Zhang & Jiahui Chen & Xi Lu, 2019. "Reflection on opportunities for high penetration of renewable energy in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    20. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:399-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.