IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp399-413.html
   My bibliography  Save this article

Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data

Author

Listed:
  • Gulin, Marko
  • Pavlović, Tomislav
  • Vašak, Mario

Abstract

In this paper we develop and verify a static model for a photovoltaic array power production prediction by integrating manufacturers’ and on-line data. The static model is a fundamental part of dynamic models that are used to predict the photovoltaic array power production along a prediction horizon, and it is important to assess its limit performance to (i) reach maximum accuracy in the power production prediction, and to (ii) enable monitoring of the photovoltaic plant for alerting the owner in the case of unexpectedly low performance. The static model is developed in two subsequent steps: (i) power production model parameters are identified on manufacturers’ data, and (ii) a model corrector is identified on on-line solar irradiance and the photovoltaic array temperature data, which significantly improves accuracy of the static power production model compared to the model identified on manufacturers’ data only. Verification is performed on measurements of solar irradiance components, the PV array temperature and the output power during a 17-month time period. The proposed combination of the model initialization with manufacturers’ data and on-line data-based correction shows very high model accuracy, and enables adaptation to different system setups. It also incorporates robustness to systematic solar irradiance prediction errors.

Suggested Citation

  • Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:399-413
    DOI: 10.1016/j.renene.2016.05.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milstein, Irena & Tishler, Asher, 2015. "Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets," Resource and Energy Economics, Elsevier, vol. 41(C), pages 70-90.
    2. Fathabadi, Hassan, 2015. "Lambert W function-based technique for tracking the maximum power point of PV modules connected in various configurations," Renewable Energy, Elsevier, vol. 74(C), pages 214-226.
    3. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    4. De Felice, Matteo & Petitta, Marcello & Ruti, Paolo M., 2015. "Short-term predictability of photovoltaic production over Italy," Renewable Energy, Elsevier, vol. 80(C), pages 197-204.
    5. Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
    6. David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
    7. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    8. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    9. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    10. Deihimi, M.H. & Naghizadeh, R.A. & Meyabadi, A. Fattahi, 2016. "Systematic derivation of parameters of one exponential model for photovoltaic modules using numerical information of data sheet," Renewable Energy, Elsevier, vol. 87(P1), pages 676-685.
    11. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    12. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    13. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    14. Wu, Yujie & Wang, Jianzhou, 2016. "A novel hybrid model based on artificial neural networks for solar radiation prediction," Renewable Energy, Elsevier, vol. 89(C), pages 268-284.
    15. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    16. Gulin, Marko & Vašak, Mario & Perić, Nedjeljko, 2013. "Dynamical optimal positioning of a photovoltaic panel in all weather conditions," Applied Energy, Elsevier, vol. 108(C), pages 429-438.
    17. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    18. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    3. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    6. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    7. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    8. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    9. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    10. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    11. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    12. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    13. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    14. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    15. François, B. & Borga, M. & Creutin, J.D. & Hingray, B. & Raynaud, D. & Sauterleute, J.F., 2016. "Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy," Renewable Energy, Elsevier, vol. 86(C), pages 543-553.
    16. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    17. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    18. Pindado, Santiago & Cubas, Javier, 2017. "Simple mathematical approach to solar cell/panel behavior based on datasheet information," Renewable Energy, Elsevier, vol. 103(C), pages 729-738.
    19. Hartner, Michael & Permoser, Andreas, 2018. "Through the valley: The impact of PV penetration levels on price volatility and resulting revenues for storage plants," Renewable Energy, Elsevier, vol. 115(C), pages 1184-1195.
    20. Roy, Swapna & Ghosh, Biswajit, 2017. "Land utilization performance of ground mounted photovoltaic power plants: A case study," Renewable Energy, Elsevier, vol. 114(PB), pages 1238-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:399-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.