IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p749-d318221.html
   My bibliography  Save this article

Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System

Author

Listed:
  • Khairy Sayed

    (Faculty of Engineering, Sohag University, Sohag 82524, Egypt)

  • Mohammed G. Gronfula

    (Faculty of Engineering, Alasala Colleges, Dammam 31483, Saudi Arabia)

  • Hamdy A. Ziedan

    (Faculty of Engineering, Assiut University, Assiut 71518, Egypt)

Abstract

This paper presents a novel soft-switching boost DC-DC converter, which uses an edge-resonant switch capacitor based on the pulse width modulation PWM technique. These converters have high gain voltage due to coupled inductors, which work as a transformer, while the boost converter works as a resonant inductor. Upon turning on, the studied soft switching circuit works at zero-current soft switching (ZCS), and upon turning off, it works at zero-voltage soft switching (ZVS) while using active semiconductor switches. High efficiency and low losses are obtained while using soft switching and auxiliary edge resonance to get a high step-up voltage ratio. A prototype model is implemented in the Power Electronics Laboratory, Assiut University, Egypt. Seventy-two-panel PV modules of 250 W each were used to simulate and execute the setup to examine the proposed boost converter.

Suggested Citation

  • Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:749-:d:318221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teuvo Suntio & Tuomas Messo & Aapo Aapro & Jyri Kivimäki & Alon Kuperman, 2017. "Review of PV Generator as an Input Source for Power Electronic Converters," Energies, MDPI, vol. 10(8), pages 1-25, July.
    2. Hussain Bassi & Zainal Salam & Mohd Zulkifli Ramli & Hatem Sindi & Muhyaddin Rawa, 2019. "Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review," Energies, MDPI, vol. 12(22), pages 1-25, November.
    3. Jukka Viinamäki & Alon Kuperman & Teuvo Suntio, 2017. "Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications," Energies, MDPI, vol. 10(7), pages 1-23, July.
    4. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    2. Quentin Combe & Alireza Abasian & Serge Pierfederici & Mathieu Weber & Stéphane Dufour, 2022. "Control of a Three-Phase Current Source Rectifier for H 2 Storage Applications in AC Microgrids," Energies, MDPI, vol. 15(7), pages 1-23, March.
    3. Abdulaziz Almutairi & Khairy Sayed & Naif Albagami & Ahmed G. Abo-Khalil & Hedra Saleeb, 2021. "Multi-Port PWM DC-DC Power Converter for Renewable Energy Applications," Energies, MDPI, vol. 14(12), pages 1-22, June.
    4. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    5. Belqasem Aljafari & Gunapriya Devarajan & Sivaranjani Subramani & Subramaniyaswamy Vairavasundaram, 2023. "Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    6. Khairy Sayed & Ziad M. Ali & Mujahed Aldhaifallah, 2020. "Phase-Shift PWM-Controlled DC–DC Converter with Secondary-Side Current Doubler Rectifier for On-Board Charger Application," Energies, MDPI, vol. 13(9), pages 1-18, May.
    7. Krzysztof Górecki & Jacek Dąbrowski & Ewa Krac, 2021. "SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic Installation," Energies, MDPI, vol. 14(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    2. Yu-Chen Liu & Ming-Cheng Chen & Chun-Yu Yang & Katherine A. Kim & Huang-Jen Chiu, 2018. "High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications," Energies, MDPI, vol. 11(3), pages 1-15, March.
    3. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    4. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    5. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    6. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    7. Saima Siouane & Slaviša Jovanović & Philippe Poure, 2018. "Service Continuity of PV Synchronous Buck/Buck-Boost Converter with Energy Storage †," Energies, MDPI, vol. 11(6), pages 1-20, May.
    8. Zhongfu Zhou & John Macaulay, 2017. "An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply," Energies, MDPI, vol. 10(12), pages 1-20, December.
    9. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    10. Manel Hammami & Gabriele Grandi, 2017. "A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm," Energies, MDPI, vol. 10(12), pages 1-19, December.
    11. Ibrahim Alsaidan & Mohd Bilal & Muhannad Alaraj & Mohammad Rizwan & Fahad M. Almasoudi, 2023. "A Novel EA-Based Techno–Economic Analysis of Charging System for Electric Vehicles: A Case Study of Qassim Region, Saudi Arabia," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    12. Jonathan Andrés Basantes & Daniela Estefanía Paredes & Jacqueline Rosario Llanos & Diego Edmundo Ortiz & Claudio Danilo Burgos, 2023. "Energy Management System (EMS) Based on Model Predictive Control (MPC) for an Isolated DC Microgrid," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Boris I. Evstatiev & Dimitar T. Trifonov & Katerina G. Gabrovska-Evstatieva & Nikolay P. Valov & Nicola P. Mihailov, 2024. "PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning," Energies, MDPI, vol. 17(20), pages 1-20, October.
    14. Xiangwu Yan & Xueyuan Zhang & Bo Zhang & Zhonghao Jia & Tie Li & Ming Wu & Jun Jiang, 2018. "A Novel Two-Stage Photovoltaic Grid-Connected Inverter Voltage-Type Control Method with Failure Zone Characteristics," Energies, MDPI, vol. 11(7), pages 1-17, July.
    15. Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
    16. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    17. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    18. Abdulaziz Almutairi & Khairy Sayed & Naif Albagami & Ahmed G. Abo-Khalil & Hedra Saleeb, 2021. "Multi-Port PWM DC-DC Power Converter for Renewable Energy Applications," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Ishita Ray, 2021. "Review of Impedance-Based Analysis Methods Applied to Grid-Forming Inverters in Inverter-Dominated Grids," Energies, MDPI, vol. 14(9), pages 1-18, May.
    20. Po Li & Ruiyu Li & Haifeng Feng, 2018. "Total Harmonic Distortion Oriented Finite Control Set Model Predictive Control for Single-Phase Inverters," Energies, MDPI, vol. 11(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:749-:d:318221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.