IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp1417-1452.html
   My bibliography  Save this article

Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals

Author

Listed:
  • Bui, Duong Minh
  • Chen, Shi-Lin
  • Lien, Keng-Yu
  • Chang, Yung-Ruei
  • Lee, Yih-Der
  • Jiang, Jheng-Lun

Abstract

In a general microgrid (MG), a step-up distribution transformer is used to facilitate integration of the low-voltage (LV) AC microgrid into a medium-voltage distribution system. On the other hand, isolation transformers are placed between distributed energy resources (DERs) (e.g. non-renewable/renewable energy resources and energy storage devices) and common AC buses/lines to eliminate DC-current components and to configure 3-phase & 4-wire, 3-phase & 3-wire, 1-phase & 2-wire, or 1-phase & 3-wire AC microgrids. When all neutral points of isolation transformers are grounded through a unique grounding system of the step-up distribution transformer, a uni-grounded AC microgrid structure is configured. This paper not only mentions advantages and shortcomings of the uni-grounded LVAC microgrid operation, but also investigates its transient operation characteristics. Transient simulation results of the uni-grounded LVAC MG are surveyed through various fault situations and operation transition tests between the grid-connected mode and the islanded mode of the microgrid. Available fault protection methods of a uni-grounded LVAC microgrid are considered. Transient simulation results from PSCAD software are used to validate the fault protection solutions developed for the uni-grounded LVAC microgrid. Last, a generalised fault protection system of uni-grounded LVAC microgrids is proposed in the paper.

Suggested Citation

  • Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:1417-1452
    DOI: 10.1016/j.rser.2016.11.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116308735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soshinskaya, Mariya & Crijns-Graus, Wina H.J. & Guerrero, Josep M. & Vasquez, Juan C., 2014. "Microgrids: Experiences, barriers and success factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 659-672.
    2. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    3. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    4. Planas, Estefanía & Gil-de-Muro, Asier & Andreu, Jon & Kortabarria, Iñigo & Martínez de Alegría, Iñigo, 2013. "General aspects, hierarchical controls and droop methods in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 147-159.
    5. Gopalan, Sachit A. & Sreeram, Victor & Iu, Herbert H.C., 2014. "A review of coordination strategies and protection schemes for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 222-228.
    6. Monadi, Mehdi & Amin Zamani, M. & Ignacio Candela, Jose & Luna, Alvaro & Rodriguez, Pedro, 2015. "Protection of AC and DC distribution systems Embedding distributed energy resources: A comparative review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1578-1593.
    7. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    8. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wookyu Chae & Jung-Hun Lee & Woo-Hyun Kim & Sungwook Hwang & Jun-Oh Kim & Jae-Eon Kim, 2021. "Adaptive Protection Coordination Method Design of Remote Microgrid for Three-Phase Short Circuit Fault," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    3. Ghanbari, T. & Farjah, E. & Naseri, F. & Tashakor, N. & Givi, H. & Khayam, R., 2018. "Solid-State Capacitor Switching Transient Limiter based on Kalman Filter algorithm for mitigation of capacitor bank switching transients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1069-1081.
    4. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    2. Bui, Duong Minh & Chen, Shi-Lin, 2017. "Fault protection solutions appropriately proposed for ungrounded low-voltage AC microgrids: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1156-1174.
    3. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    4. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    5. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.
    6. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    7. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    8. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    9. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    10. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    11. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    13. Gopalan, Sachit A. & Sreeram, Victor & Iu, Herbert H.C., 2014. "A review of coordination strategies and protection schemes for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 222-228.
    14. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    15. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    16. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    17. Martin-Martínez, F. & Sánchez-Miralles, A. & Rivier, M., 2016. "A literature review of Microgrids: A functional layer based classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1133-1153.
    18. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    19. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Jayamaha, D.K.J.S. & Lidula, N.W.A. & Rajapakse, A.D., 2020. "Protection and grounding methods in DC microgrids: Comprehensive review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:1417-1452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.