Catalysis-Free Growth of III-V Core-Shell Nanowires on p -Si for Efficient Heterojunction Solar Cells with Optimized Window Layer
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Giacomo Mariani & Adam C. Scofield & Chung-Hong Hung & Diana L. Huffaker, 2013. "GaAs nanopillar-array solar cells employing in situ surface passivation," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
- Jeppe V. Holm & Henrik I. Jørgensen & Peter Krogstrup & Jesper Nygård & Huiyun Liu & Martin Aagesen, 2013. "Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
- Jesús A. del Alamo, 2011. "Nanometre-scale electronics with III–V compound semiconductors," Nature, Nature, vol. 479(7373), pages 317-323, November.
- Katsuhiro Tomioka & Masatoshi Yoshimura & Takashi Fukui, 2012. "A III–V nanowire channel on silicon for high-performance vertical transistors," Nature, Nature, vol. 488(7410), pages 189-192, August.
- Youcef A. Bioud & Abderraouf Boucherif & Maksym Myronov & Ali Soltani & Gilles Patriarche & Nadi Braidy & Mourad Jellite & Dominique Drouin & Richard Arès, 2019. "Uprooting defects to enable high-performance III–V optoelectronic devices on silicon," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
- Pengyan Wen & Preksha Tiwari & Svenja Mauthe & Heinz Schmid & Marilyne Sousa & Markus Scherrer & Michael Baumann & Bertold Ian Bitachon & Juerg Leuthold & Bernd Gotsmann & Kirsten E. Moselund, 2022. "Waveguide coupled III-V photodiodes monolithically integrated on Si," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Alexandre Heintz & Bouraoui Ilahi & Alexandre Pofelski & Gianluigi Botton & Gilles Patriarche & Andrea Barzaghi & Simon Fafard & Richard Arès & Giovanni Isella & Abderraouf Boucherif, 2022. "Defect free strain relaxation of microcrystals on mesoporous patterned silicon," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Fengjing Liu & Xinming Zhuang & Mingxu Wang & Dongqing Qi & Shengpan Dong & SenPo Yip & Yanxue Yin & Jie Zhang & Zixu Sa & Kepeng Song & Longbing He & Yang Tan & You Meng & Johnny C. Ho & Lei Liao & F, 2023. "Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yiwen Zhang & Baoming Wang & Changxu Miao & Haozhi Chai & Wei Hong & Frances M. Ross & Rui-Tao Wen, 2024. "Controlled formation of three-dimensional cavities during lateral epitaxial growth," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Seung-Il Kim & Ji-Yun Moon & Seok-Ki Hyeong & Soheil Ghods & Jin-Su Kim & Jun-Hui Choi & Dong Seop Park & Sukang Bae & Sung Ho Cho & Seoung-Ki Lee & Jae-Hyun Lee, 2024. "Float-stacked graphene–PMMA laminate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Leila Balaghi & Si Shan & Ivan Fotev & Finn Moebus & Rakesh Rana & Tommaso Venanzi & René Hübner & Thomas Mikolajick & Harald Schneider & Manfred Helm & Alexej Pashkin & Emmanouil Dimakis, 2021. "High electron mobility in strained GaAs nanowires," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Dāgs Olšteins & Gunjan Nagda & Damon J. Carrad & Daria V. Beznasyuk & Christian E. N. Petersen & Sara Martí-Sánchez & Jordi Arbiol & Thomas S. Jespersen, 2023. "Cryogenic multiplexing using selective area grown nanowires," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
More about this item
Keywords
heteroepitaxial growth; III-V; core-shell nanowire; indium tin oxide; oblique angle deposition; photo conversion efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1772-:d:760362. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.