IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46502-6.html
   My bibliography  Save this article

Float-stacked graphene–PMMA laminate

Author

Listed:
  • Seung-Il Kim

    (Ajou University
    Ajou University
    Washington University in St. Louis)

  • Ji-Yun Moon

    (Ajou University
    Ajou University
    Washington University in St. Louis)

  • Seok-Ki Hyeong

    (Ajou University
    Ajou University
    Institute of Advanced Composite Materials, Korea Institute of Science and Technology)

  • Soheil Ghods

    (Ajou University
    Ajou University)

  • Jin-Su Kim

    (Ajou University
    Ajou University)

  • Jun-Hui Choi

    (Ajou University
    Ajou University)

  • Dong Seop Park

    (Ajou University)

  • Sukang Bae

    (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)

  • Sung Ho Cho

    (Samsung Display)

  • Seoung-Ki Lee

    (Pusan National University)

  • Jae-Hyun Lee

    (Ajou University
    Ajou University
    Institute of Advanced Composite Materials, Korea Institute of Science and Technology)

Abstract

Semi-infinite single-atom-thick graphene is an ideal reinforcing material that can simultaneously improve the mechanical, electrical, and thermal properties of matrix. Here, we present a float-stacking strategy to accurately align the monolayer graphene reinforcement in polymer matrix. We float graphene-poly(methylmethacrylate) (PMMA) membrane (GPM) at the water–air interface, and wind-up layer-by-layer by roller. During the stacking process, the inherent water meniscus continuously induces web tension of the GPM, suppressing wrinkle and folding generation. Moreover, rolling-up and hot-rolling mill process above the glass transition temperature of PMMA induces conformal contact between each layer. This allows for pre-tension of the composite, maximizing its reinforcing efficiency. The number and spacing of the embedded graphene fillers are precisely controlled. Notably, we accurately align 100 layers of monolayer graphene in a PMMA matrix with the same intervals to achieve a specific strength of about 118.5 MPa g−1 cm3, which is higher than that of lightweight Al alloy, and a thermal conductivity of about 4.00 W m−1 K−1, which is increased by about 2,000 %, compared to the PMMA film.

Suggested Citation

  • Seung-Il Kim & Ji-Yun Moon & Seok-Ki Hyeong & Soheil Ghods & Jin-Su Kim & Jun-Hui Choi & Dong Seop Park & Sukang Bae & Sung Ho Cho & Seoung-Ki Lee & Jae-Hyun Lee, 2024. "Float-stacked graphene–PMMA laminate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46502-6
    DOI: 10.1038/s41467-024-46502-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46502-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46502-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna V. Prydatko & Liubov A. Belyaeva & Lin Jiang & Lia M. C. Lima & Grégory F. Schneider, 2018. "Contact angle measurement of free-standing square-millimeter single-layer graphene," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Yixuan Zhao & Yuqing Song & Zhaoning Hu & Wendong Wang & Zhenghua Chang & Yan Zhang & Qi Lu & Haotian Wu & Junhao Liao & Wentao Zou & Xin Gao & Kaicheng Jia & La Zhuo & Jingyi Hu & Qin Xie & Rui Zhang, 2022. "Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jesús A. del Alamo, 2011. "Nanometre-scale electronics with III–V compound semiconductors," Nature, Nature, vol. 479(7373), pages 317-323, November.
    4. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    5. Christos Pavlou & Maria Giovanna Pastore Carbone & Anastasios C. Manikas & George Trakakis & Can Koral & Gianpaolo Papari & Antonello Andreone & Costas Galiotis, 2021. "Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Fengjing Liu & Xinming Zhuang & Mingxu Wang & Dongqing Qi & Shengpan Dong & SenPo Yip & Yanxue Yin & Jie Zhang & Zixu Sa & Kepeng Song & Longbing He & Yang Tan & You Meng & Johnny C. Ho & Lei Liao & F, 2023. "Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Ning Xu & Li Shi & Xudong Pei & Weiyang Zhang & Jian Chen & Zheng Han & Paolo Samorì & Jinlan Wang & Peng Wang & Yi Shi & Songlin Li, 2023. "Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Xuanzhang Li & Yang Wei & Zhijie Wang & Ya Kong & Yipeng Su & Gaotian Lu & Zhen Mei & Yi Su & Guangqi Zhang & Jianhua Xiao & Liang Liang & Jia Li & Qunqing Li & Jin Zhang & Shoushan Fan & Yuegang Zhan, 2023. "One-dimensional semimetal contacts to two-dimensional semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Senfeng Zeng & Chunsen Liu & Xiaohe Huang & Zhaowu Tang & Liwei Liu & Peng Zhou, 2022. "An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Jian Zhou & Chunchen Zhang & Li Shi & Xiaoqing Chen & Tae Soo Kim & Minseung Gyeon & Jian Chen & Jinlan Wang & Linwei Yu & Xinran Wang & Kibum Kang & Emanuele Orgiu & Paolo Samorì & Kenji Watanabe & T, 2022. "Non-invasive digital etching of van der Waals semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yue Hu & Jingwen Jiang & Peng Zhang & Zhuang Ma & Fuxin Guan & Da Li & Zhengfang Qian & Xiuwen Zhang & Pu Huang, 2023. "Prediction of nonlayered oxide monolayers as flexible high-κ dielectrics with negative Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Sung Bum Kang & Rahul Sharma & Minhyeok Jo & Su In Kim & Jeongwoo Hwang & Sang Hyuk Won & Jae Cheol Shin & Kyoung Jin Choi, 2022. "Catalysis-Free Growth of III-V Core-Shell Nanowires on p -Si for Efficient Heterojunction Solar Cells with Optimized Window Layer," Energies, MDPI, vol. 15(5), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46502-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.