IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12353-9.html
   My bibliography  Save this article

Uprooting defects to enable high-performance III–V optoelectronic devices on silicon

Author

Listed:
  • Youcef A. Bioud

    (Université de Sherbrooke)

  • Abderraouf Boucherif

    (Université de Sherbrooke)

  • Maksym Myronov

    (University of Warwick)

  • Ali Soltani

    (Université de Sherbrooke)

  • Gilles Patriarche

    (Université Paris-Saclay)

  • Nadi Braidy

    (Université de Sherbrooke
    Université de Sherbrooke)

  • Mourad Jellite

    (Université de Sherbrooke)

  • Dominique Drouin

    (Université de Sherbrooke)

  • Richard Arès

    (Université de Sherbrooke)

Abstract

The monolithic integration of III-V compound semiconductor devices with silicon presents physical and technological challenges, linked to the creation of defects during the deposition process. Herein, a new defect elimination strategy in highly mismatched heteroepitaxy is demonstrated to achieve a ultra-low dislocation density, epi-ready Ge/Si virtual substrate on a wafer scale, using a highly scalable process. Dislocations are eliminated from the epilayer through dislocation-selective electrochemical deep etching followed by thermal annealing, which creates nanovoids that attract dislocations, facilitating their subsequent annihilation. The averaged dislocation density is reduced by over three orders of magnitude, from ~108 cm−2 to a lower-limit of ~104 cm−2 for 1.5 µm thick Ge layer. The optical properties indicate a strong enhancement of luminescence efficiency in GaAs grown on this virtual substrate. Collectively, this work demonstrates the promise for transfer of this technology to industrial-scale production of integrated photonic and optoelectronic devices on Si platforms in a cost-effective way.

Suggested Citation

  • Youcef A. Bioud & Abderraouf Boucherif & Maksym Myronov & Ali Soltani & Gilles Patriarche & Nadi Braidy & Mourad Jellite & Dominique Drouin & Richard Arès, 2019. "Uprooting defects to enable high-performance III–V optoelectronic devices on silicon," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12353-9
    DOI: 10.1038/s41467-019-12353-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12353-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12353-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Heintz & Bouraoui Ilahi & Alexandre Pofelski & Gianluigi Botton & Gilles Patriarche & Andrea Barzaghi & Simon Fafard & Richard Arès & Giovanni Isella & Abderraouf Boucherif, 2022. "Defect free strain relaxation of microcrystals on mesoporous patterned silicon," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Sung Bum Kang & Rahul Sharma & Minhyeok Jo & Su In Kim & Jeongwoo Hwang & Sang Hyuk Won & Jae Cheol Shin & Kyoung Jin Choi, 2022. "Catalysis-Free Growth of III-V Core-Shell Nanowires on p -Si for Efficient Heterojunction Solar Cells with Optimized Window Layer," Energies, MDPI, vol. 15(5), pages 1-10, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12353-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.