IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43551-1.html
   My bibliography  Save this article

Cryogenic multiplexing using selective area grown nanowires

Author

Listed:
  • Dāgs Olšteins

    (University of Copenhagen
    Technical University of Denmark)

  • Gunjan Nagda

    (University of Copenhagen)

  • Damon J. Carrad

    (Technical University of Denmark)

  • Daria V. Beznasyuk

    (Technical University of Denmark)

  • Christian E. N. Petersen

    (Technical University of Denmark)

  • Sara Martí-Sánchez

    (CSIC and BIST)

  • Jordi Arbiol

    (CSIC and BIST
    ICREA)

  • Thomas S. Jespersen

    (University of Copenhagen
    Technical University of Denmark)

Abstract

Bottom-up grown nanomaterials play an integral role in the development of quantum technologies but are often challenging to characterise on large scales. Here, we harness selective area growth of semiconductor nanowires to demonstrate large-scale integrated circuits and characterisation of large numbers of quantum devices. The circuit consisted of 512 quantum devices embedded within multiplexer/demultiplexer pairs, incorporating thousands of interconnected selective area growth nanowires operating under deep cryogenic conditions. Multiplexers enable a range of new strategies in quantum device research and scaling by increasing the device count while limiting the number of connections between room-temperature control electronics and the cryogenic samples. As an example of this potential we perform a statistical characterization of large arrays of identical quantum dots thus establishing the feasibility of applying cross-bar gating strategies for efficient scaling of future selective area growth quantum circuits. More broadly, the ability to systematically characterise large numbers of devices provides new levels of statistical certainty to materials/device development.

Suggested Citation

  • Dāgs Olšteins & Gunjan Nagda & Damon J. Carrad & Daria V. Beznasyuk & Christian E. N. Petersen & Sara Martí-Sánchez & Jordi Arbiol & Thomas S. Jespersen, 2023. "Cryogenic multiplexing using selective area grown nanowires," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43551-1
    DOI: 10.1038/s41467-023-43551-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43551-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43551-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katsuhiro Tomioka & Masatoshi Yoshimura & Takashi Fukui, 2012. "A III–V nanowire channel on silicon for high-performance vertical transistors," Nature, Nature, vol. 488(7410), pages 189-192, August.
    2. H. Moon & D. T. Lennon & J. Kirkpatrick & N. M. Esbroeck & L. C. Camenzind & Liuqi Yu & F. Vigneau & D. M. Zumbühl & G. A. D. Briggs & M. A. Osborne & D. Sejdinovic & E. A. Laird & N. Ares, 2020. "Machine learning enables completely automatic tuning of a quantum device faster than human experts," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. L. Hofstetter & S. Csonka & J. Nygård & C. Schönenberger, 2009. "Cooper pair splitter realized in a two-quantum-dot Y-junction," Nature, Nature, vol. 461(7266), pages 960-963, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingzhen Wang & Sebastiaan L. D. Haaf & Ivan Kulesh & Di Xiao & Candice Thomas & Michael J. Manfra & Srijit Goswami, 2023. "Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Pengyan Wen & Preksha Tiwari & Svenja Mauthe & Heinz Schmid & Marilyne Sousa & Markus Scherrer & Michael Baumann & Bertold Ian Bitachon & Juerg Leuthold & Bernd Gotsmann & Kirsten E. Moselund, 2022. "Waveguide coupled III-V photodiodes monolithically integrated on Si," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Sung Bum Kang & Rahul Sharma & Minhyeok Jo & Su In Kim & Jeongwoo Hwang & Sang Hyuk Won & Jae Cheol Shin & Kyoung Jin Choi, 2022. "Catalysis-Free Growth of III-V Core-Shell Nanowires on p -Si for Efficient Heterojunction Solar Cells with Optimized Window Layer," Energies, MDPI, vol. 15(5), pages 1-10, February.
    4. Yiwen Zhang & Baoming Wang & Changxu Miao & Haozhi Chai & Wei Hong & Frances M. Ross & Rui-Tao Wen, 2024. "Controlled formation of three-dimensional cavities during lateral epitaxial growth," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Leila Balaghi & Si Shan & Ivan Fotev & Finn Moebus & Rakesh Rana & Tommaso Venanzi & René Hübner & Thomas Mikolajick & Harald Schneider & Manfred Helm & Alexej Pashkin & Emmanouil Dimakis, 2021. "High electron mobility in strained GaAs nanowires," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Bhupendra Kumar & Sachin Verma & Tanuj Chamoli & Ajay, 2023. "Josephson transport across T-shaped and series-configured double quantum dots system at infinite- $$\textit{U}$$ U limit," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43551-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.