IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46222-x.html
   My bibliography  Save this article

Controlled formation of three-dimensional cavities during lateral epitaxial growth

Author

Listed:
  • Yiwen Zhang

    (Southern University of Science and Technology)

  • Baoming Wang

    (Massachusetts Institute of Technology)

  • Changxu Miao

    (Southern University of Science and Technology)

  • Haozhi Chai

    (Southern University of Science and Technology)

  • Wei Hong

    (Southern University of Science and Technology)

  • Frances M. Ross

    (Massachusetts Institute of Technology)

  • Rui-Tao Wen

    (Southern University of Science and Technology)

Abstract

Epitaxial growth is a fundamental step required to create devices for the semiconductor industry, enabling different materials to be combined in layers with precise control of strain and defect structure. Patterning the growth substrate with a mask before performing epitaxial growth offers additional degrees of freedom to engineer the structure and hence function of the semiconductor device. Here, we demonstrate that conditions exist where such epitaxial lateral overgrowth can produce complex, three-dimensional structures that incorporate cavities of deterministic size. We grow germanium on silicon substrates patterned with a dielectric mask and show that fully-enclosed cavities can be created through an unexpected self-assembly process that is controlled by surface diffusion and surface energy minimization. The result is confined cavities enclosed by single crystalline Ge, with size and position tunable through the initial mask pattern. We present a model to account for the observed cavity symmetry, pinch-off and subsequent evolution, reflecting the dominant role of surface energy. Since dielectric mask patterning and epitaxial growth are compatible with conventional device processing steps, we suggest that this mechanism provides a strategy for developing electronic and photonic functionalities.

Suggested Citation

  • Yiwen Zhang & Baoming Wang & Changxu Miao & Haozhi Chai & Wei Hong & Frances M. Ross & Rui-Tao Wen, 2024. "Controlled formation of three-dimensional cavities during lateral epitaxial growth," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46222-x
    DOI: 10.1038/s41467-024-46222-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46222-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46222-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna Fontcuberta i Morral, 2020. "Nanostructured alloys light the way to silicon-based photonics," Nature, Nature, vol. 580(7802), pages 188-189, April.
    2. Katsuhiro Tomioka & Masatoshi Yoshimura & Takashi Fukui, 2012. "A III–V nanowire channel on silicon for high-performance vertical transistors," Nature, Nature, vol. 488(7410), pages 189-192, August.
    3. Roosen, Andrew R. & Carter, W.Craig, 1998. "Simulations of microstructural evolution: anisotropic growth and coarsening," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(1), pages 232-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengyan Wen & Preksha Tiwari & Svenja Mauthe & Heinz Schmid & Marilyne Sousa & Markus Scherrer & Michael Baumann & Bertold Ian Bitachon & Juerg Leuthold & Bernd Gotsmann & Kirsten E. Moselund, 2022. "Waveguide coupled III-V photodiodes monolithically integrated on Si," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sung Bum Kang & Rahul Sharma & Minhyeok Jo & Su In Kim & Jeongwoo Hwang & Sang Hyuk Won & Jae Cheol Shin & Kyoung Jin Choi, 2022. "Catalysis-Free Growth of III-V Core-Shell Nanowires on p -Si for Efficient Heterojunction Solar Cells with Optimized Window Layer," Energies, MDPI, vol. 15(5), pages 1-10, February.
    3. Leila Balaghi & Si Shan & Ivan Fotev & Finn Moebus & Rakesh Rana & Tommaso Venanzi & René Hübner & Thomas Mikolajick & Harald Schneider & Manfred Helm & Alexej Pashkin & Emmanouil Dimakis, 2021. "High electron mobility in strained GaAs nanowires," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Dāgs Olšteins & Gunjan Nagda & Damon J. Carrad & Daria V. Beznasyuk & Christian E. N. Petersen & Sara Martí-Sánchez & Jordi Arbiol & Thomas S. Jespersen, 2023. "Cryogenic multiplexing using selective area grown nanowires," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46222-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.