IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1395-d749401.html
   My bibliography  Save this article

Use of CO 2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses

Author

Listed:
  • Mateusz Szul

    (Institute for Chemical Processing of Coal (IChPW), 41-803 Zabrze, Poland)

  • Tomasz Iluk

    (Institute for Chemical Processing of Coal (IChPW), 41-803 Zabrze, Poland)

  • Jarosław Zuwała

    (Institute for Chemical Processing of Coal (IChPW), 41-803 Zabrze, Poland)

Abstract

This research discusses the results of experiments performed on a large-scale gasification installation to determine the influence of total system pressure and partial pressure of CO 2 on the efficiency of conversion and the quality of the produced gas. The three tested feedstocks were bark, lignin and a blend of bark and wheat straw, while softwood pellet (SWP) was used as a reference fuel. A mixture of O 2 /CO 2 /H 2 O was used as a gasification agent. The tests were devised to validate the previously proposed process parameters, verify whether similar ash agglomeration problems would occur and compare the thermal behaviour of the feedstocks converted in close-to-industrial process conditions. An understanding of the effect of using CO 2 for gasification was further deepened, especially regarding its influence on the yield of H 2 and temperature profiles of the fluidized bed. The influence of gasification pressure was predominantly visible in higher yields of all hydrocarbons (including CH 4 ) and lower overall production of producer gas. At the process development unit (PDU), all tested feedstocks were converted at similar process conditions and no signs of potential bed agglomeration could be noticed. This opposes the findings observed in smaller-scale bubbling fluidized bed (BFB) tests. The discussion behind these discrepancies is also presented.

Suggested Citation

  • Mateusz Szul & Tomasz Iluk & Jarosław Zuwała, 2022. "Use of CO 2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses," Energies, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1395-:d:749401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Weiwei & Huang, Sheng & Wu, Shiyong & Wu, Youqing & Gao, Jinsheng, 2020. "Ash fusion characteristics and gasification activity during biomasses co-gasification process," Renewable Energy, Elsevier, vol. 147(P1), pages 1584-1594.
    2. Sylvie Valin & Serge Ravel & Philippe Pons de Vincent & Sébastien Thiery & Hélène Miller & Françoise Defoort & Maguelone Grateau, 2020. "Fluidised Bed Gasification of Diverse Biomass Feedstocks and Blends—An Overall Performance Study," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Soreanu, G. & Tomaszewicz, M. & Fernandez-Lopez, M. & Valverde, J.L. & Zuwała, J. & Sanchez-Silva, L., 2017. "CO2 gasification process performance for energetic valorization of microalgae," Energy, Elsevier, vol. 119(C), pages 37-43.
    4. Siddiqi, Muhammad Hamid & Liu, Xiao-min & Hussain, Muhammad Asif & Qureshi, Tayyab & Tabish, Asif Nadeem & Lateef, Hafiz Umair & Zeb, Hassan & Farooq, Muhammad & Nawaz, Saba & Nawaz, Saher, 2022. "Evaluation of physiochemical, thermal and kinetic properties of wheat straw by demineralising with leaching reagents for energy applications," Energy, Elsevier, vol. 238(PC).
    5. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    6. Jeremiáš, M. & Pohořelý, M. & Svoboda, K. & Skoblia, S. & Beňo, Z. & Šyc, M., 2018. "CO2 gasification of biomass: The effect of lime concentration in a fluidised bed," Applied Energy, Elsevier, vol. 217(C), pages 361-368.
    7. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & He, Tianzhi & Li, Juan, 2019. "Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures," Energy, Elsevier, vol. 179(C), pages 571-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagio Morrone, 2022. "Residual Biomass Conversion to Bioenergy," Energies, MDPI, vol. 15(16), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    2. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    5. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Abdulrahman A. Al-Rabiah & Jiyad N. Al-Dawsari & Abdelhamid M. Ajbar & Rayan K. Al Darwish & Omar Y. Abdelaziz, 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae," Energies, MDPI, vol. 15(21), pages 1-14, October.
    7. Sunyong Park & Seon Yeop Kim & Ha Eun Kim & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Calorific Value Prediction Model Using Structure Composition of Heat-Treated Lignocellulosic Biomass," Energies, MDPI, vol. 16(23), pages 1-15, December.
    8. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    9. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    10. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    12. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    13. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Chen, Zhichao & Qiao, Yanyu & Wu, Xiaolan & Zheng, Yu & Li, Jiawei & Yuan, Zhenhua & Li, Zhengqi, 2023. "Effect of demineralization on pyrolysis semi-coke physical and chemical characteristics and oxy-fuel combustion characteristics," Energy, Elsevier, vol. 262(PB).
    15. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    16. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    17. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    18. Bareschino, P. & Mancusi, E. & Tregambi, C. & Pepe, F. & Urciuolo, M. & Brachi, P. & Ruoppolo, G., 2021. "Integration of biomasses gasification and renewable-energies-driven water electrolysis for methane production," Energy, Elsevier, vol. 230(C).
    19. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    20. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1395-:d:749401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.