IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022611.html
   My bibliography  Save this article

Evaluation of physiochemical, thermal and kinetic properties of wheat straw by demineralising with leaching reagents for energy applications

Author

Listed:
  • Siddiqi, Muhammad Hamid
  • Liu, Xiao-min
  • Hussain, Muhammad Asif
  • Qureshi, Tayyab
  • Tabish, Asif Nadeem
  • Lateef, Hafiz Umair
  • Zeb, Hassan
  • Farooq, Muhammad
  • Nawaz, Saba
  • Nawaz, Saher

Abstract

The augmented concerns towards greenhouse emissions have stimulated the innovative technologies to reduce the carbon footprints and lessen the usage of fossil fuel by replacing them with biomass. Wheat straw is a biowaste and has a great potential for energy-production. However, the inorganic contents in the wheat straw cause operational problems such as low heat transfer and ash-deposition in combustion chamber leading to high maintenance requirements. Demineralization of wheat straw with various basic and acidic leaching reagents (NaOH, HCl, HNO3) was investigated in this study. The concentrations of leachants was varied from 0.6, 0.4 and 0.2M to study their effect on physical, chemical, thermal and kinetic behavior of the biomass. The 0.6 M HCl solution reduced the maximum ash content up to 92.71 % and raised the heating value to 3.98 % than raw wheat straw. The kinetic study of the samples treated with 0.6M HCl demonstrated the superior ignition and the activation-energy than other samples. On other hand NaOH damaged the structure of the wheat straw and had adverse effects on their physical and chemical properties. The results of the current study suggested that HCl treated wheat straw can provide a cost effective and eco-friendly solution for energy generation.

Suggested Citation

  • Siddiqi, Muhammad Hamid & Liu, Xiao-min & Hussain, Muhammad Asif & Qureshi, Tayyab & Tabish, Asif Nadeem & Lateef, Hafiz Umair & Zeb, Hassan & Farooq, Muhammad & Nawaz, Saba & Nawaz, Saher, 2022. "Evaluation of physiochemical, thermal and kinetic properties of wheat straw by demineralising with leaching reagents for energy applications," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022611
    DOI: 10.1016/j.energy.2021.122013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
    2. Chin, K.L. & H'ng, P.S. & Paridah, M.T. & Szymona, K. & Maminski, M. & Lee, S.H. & Lum, W.C. & Nurliyana, M.Y. & Chow, M.J. & Go, W.Z., 2015. "Reducing ash related operation problems of fast growing timber species and oil palm biomass for combustion applications using leaching techniques," Energy, Elsevier, vol. 90(P1), pages 622-630.
    3. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    4. Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
    5. Wang, Kaige & Zhang, Jing & Shanks, Brent H. & Brown, Robert C., 2015. "The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation," Applied Energy, Elsevier, vol. 148(C), pages 115-120.
    6. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Qiao, Yanyu & Chen, Zhichao & Wu, Xiaolan & Li, Zhengqi, 2023. "Effect of demineralization on waste tire pyrolysis char physical, chemical characteristics and combustion characteristics," Energy, Elsevier, vol. 284(C).
    3. Mateusz Szul & Tomasz Iluk & Jarosław Zuwała, 2022. "Use of CO 2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses," Energies, MDPI, vol. 15(4), pages 1-20, February.
    4. Chen, Zhichao & Qiao, Yanyu & Wu, Xiaolan & Zheng, Yu & Li, Jiawei & Yuan, Zhenhua & Li, Zhengqi, 2023. "Effect of demineralization on pyrolysis semi-coke physical and chemical characteristics and oxy-fuel combustion characteristics," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    2. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    3. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    4. Yanfen, Liao & Xiaoqian, Ma, 2010. "Thermogravimetric analysis of the co-combustion of coal and paper mill sludge," Applied Energy, Elsevier, vol. 87(11), pages 3526-3532, November.
    5. Siddiqui, M.T.H. & Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Mubarak, N.M. & Mazari, Shaukat Ali & Griffin, G.J. & Srinivasan, Madapusi, 2021. "Dual-application of novel magnetic carbon nanocomposites as catalytic liquefaction for bio-oil synthesis and multi-heavy metal adsorption," Renewable Energy, Elsevier, vol. 172(C), pages 1103-1119.
    6. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    7. Zhao, Peitao & Chen, Hongfang & Ge, Shifu & Yoshikawa, Kunio, 2013. "Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion," Applied Energy, Elsevier, vol. 111(C), pages 199-205.
    8. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    9. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    10. Zhang, Xin & Wu, Ke & Yuan, Qiaoxia, 2020. "Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: Bio-oil yields and properties," Energy, Elsevier, vol. 200(C).
    11. Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
    12. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    13. Lou, Rui & Wu, Shubin & Lv, Gaojin & Yang, Qing, 2012. "Energy and resource utilization of deinking sludge pyrolysis," Applied Energy, Elsevier, vol. 90(1), pages 46-50.
    14. Zeng, Kuo & Wang, Biao & Xia, Shengpeng & Cui, Chaoxian & Wang, Chenyang & Zheng, Anqing & Zhao, Kun & Zhao, Zengli & Li, Haibin & Isobaev, M.D., 2022. "Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature," Energy, Elsevier, vol. 254(PA).
    15. Khalekuzzaman, Md & Jahan, Nusrat & Bin Kabir, Sadib & Hasan, Mehedi, 2024. "An integrated energy recovery approach of biohythane-biocrude production from microalgae-sludge through co-digestion and co-liquefaction," Renewable Energy, Elsevier, vol. 225(C).
    16. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    17. Fang, Shiwen & Lin, Yousheng & Lin, Yan & Chen, Shu & Shen, Xiangyang & Zhong, Tianming & Ding, Lixing & Ma, Xiaoqian, 2020. "Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge," Energy, Elsevier, vol. 190(C).
    18. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    19. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    20. Sun, Ce & Li, Wenlong & Chen, Xiaojian & Li, Changxin & Tan, Haiyan & Zhang, Yanhua, 2021. "Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour," Renewable Energy, Elsevier, vol. 171(C), pages 254-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.