CO2 gasification of biomass: The effect of lime concentration in a fluidised bed
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.02.151
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koponen, Kati & Hannula, Ilkka, 2017. "GHG emission balances and prospects of hydrogen enhanced synthetic biofuels from solid biomass in the European context," Applied Energy, Elsevier, vol. 200(C), pages 106-118.
- Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
- Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
- Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Junjie Xue & Zhen Dong & Hao Chen & Mengyuan Zhang & Yufeng Zhao & Yanpeng Chen & Shanshan Chen, 2024. "Gasification of the Char Residues with High Ash Content by Carbon Dioxide," Energies, MDPI, vol. 17(17), pages 1-35, September.
- Mateusz Szul & Tomasz Iluk & Jarosław Zuwała, 2022. "Use of CO 2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses," Energies, MDPI, vol. 15(4), pages 1-20, February.
- Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
- Ku, Xiaoke & Wang, Jin & Jin, Hanhui & Lin, Jianzhong, 2019. "Effects of operating conditions and reactor structure on biomass entrained-flow gasification," Renewable Energy, Elsevier, vol. 139(C), pages 781-795.
- Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
- Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
- Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
- Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
- Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
- Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
- Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
- Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
- Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
- Md Tanvir Alam & Se-Won Park & Sang-Yeop Lee & Yean-Ouk Jeong & Anthony De Girolamo & Yong-Chil Seo & Hang Seok Choi, 2020. "Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends," Energies, MDPI, vol. 13(8), pages 1-16, April.
- Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
- Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
- Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
- Jun Tao & Leiqiang Zhao & Changqing Dong & Qiang Lu & Xiaoze Du & Erik Dahlquist, 2013. "Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO 2 /SBA-15 Catalysts," Energies, MDPI, vol. 6(7), pages 1-13, July.
- Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
- Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Bendoni, R. & Miccio, F. & Medri, V. & Benito, P. & Vaccari, A. & Landi, E., 2019. "Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas," Renewable Energy, Elsevier, vol. 131(C), pages 1107-1116.
- Ilkka Hannula & David M Reiner, 2017.
"The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles,"
Working Papers
EPRG 1721, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Hannula, I. & Reiner, D., 2017. "The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles," Cambridge Working Papers in Economics 1758, Faculty of Economics, University of Cambridge.
More about this item
Keywords
Tar; Biomass; Reforming; Limestone; Dolomite; CO2;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:361-368. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.