IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7896-d1293337.html
   My bibliography  Save this article

Calorific Value Prediction Model Using Structure Composition of Heat-Treated Lignocellulosic Biomass

Author

Listed:
  • Sunyong Park

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • Seon Yeop Kim

    (Department of Biosystems Engineering, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • Ha Eun Kim

    (Department of Biosystems Engineering, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • Kwang Cheol Oh

    (Agriculture and Life Science Research Institute, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • Seok Jun Kim

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • La Hoon Cho

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • Young Kwang Jeon

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

  • DaeHyun Kim

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea
    Agriculture and Life Science Research Institute, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Republic of Korea)

Abstract

This study aims to identify an equation for predicting the calorific value for heat-treated biomass using structural analysis. Different models were constructed using 129 samples of cellulose, hemicellulose, and lignin, and calorific values obtained from previous studies. These models were validated using 41 additional datasets, and an optimal model was identified using its results and following performance metrics: the coefficient of determination (R 2 ), mean absolute error (MAE), root-mean-squared error (RMSE), average absolute error (AAE), and average bias error (ABE). Finally, the model was verified using 25 additional data points. For the overall dataset, R 2 was ~0.52, and the RMSE range was 1.46–1.77. For woody biomass, the R 2 range was 0.78–0.83, and the RMSE range was 0.9626–1.2810. For herbaceous biomass, the R 2 range was 0.5251–0.6001, and the RMSE range was 1.1822–1.3957. The validation results showed similar or slightly poorer performances. The optimal model was then tested using the test data. For overall biomass and woody biomass, the performance metrics of the obtained model were superior to those in previous studies, whereas for herbaceous biomass, lower performance metrics were observed. The identified model demonstrated equal or superior performance compared to linear models. Further improvements are required based on a wider range of structural biomass data.

Suggested Citation

  • Sunyong Park & Seon Yeop Kim & Ha Eun Kim & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Calorific Value Prediction Model Using Structure Composition of Heat-Treated Lignocellulosic Biomass," Energies, MDPI, vol. 16(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7896-:d:1293337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    2. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    3. Esteban Valdez & Lope G. Tabil & Edmund Mupondwa & Duncan Cree & Hadi Moazed, 2021. "Microwave Torrefaction of Oat Hull: Effect of Temperature and Residence Time," Energies, MDPI, vol. 14(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    2. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    5. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    6. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    7. Abdulrahman A. Al-Rabiah & Jiyad N. Al-Dawsari & Abdelhamid M. Ajbar & Rayan K. Al Darwish & Omar Y. Abdelaziz, 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae," Energies, MDPI, vol. 15(21), pages 1-14, October.
    8. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    9. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    10. Germán Álvarez-López & Alejandra María Múnera & Juan G. Villegas, 2023. "Multicriteria Decision-Making Tools for the Selection of Biomasses as Supplementary Cementitious Materials," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    11. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
    13. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    14. Bareschino, P. & Mancusi, E. & Tregambi, C. & Pepe, F. & Urciuolo, M. & Brachi, P. & Ruoppolo, G., 2021. "Integration of biomasses gasification and renewable-energies-driven water electrolysis for methane production," Energy, Elsevier, vol. 230(C).
    15. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    16. Sun Yong Park & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses," Energies, MDPI, vol. 16(14), pages 1-17, July.
    17. Donghoon Shin & Akhil Francis & Purushothaman Vellayani Aravind & Theo Woudstra & Wiebren de Jong & Dirk Roekaerts, 2022. "Numerical Evaluation of Biochar Production Performance of Downdraft Gasifier by Thermodynamic Model," Energies, MDPI, vol. 15(20), pages 1-18, October.
    18. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Dong, Lei & Tao, Junyu & Zhang, Zhaoling & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2021. "Energy utilization and disposal of herb residue by an integrated energy conversion system: A pilot scale study," Energy, Elsevier, vol. 215(PB).
    20. Mateusz Szul & Tomasz Iluk & Jarosław Zuwała, 2022. "Use of CO 2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses," Energies, MDPI, vol. 15(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7896-:d:1293337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.