IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6862-d1249879.html
   My bibliography  Save this article

A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells

Author

Listed:
  • Alessio Bosio

    (Department of Mathematical, Physical and Computer Science, University of Parma, 43124 Parma, Italy)

  • Gianluca Foti

    (Department of Mathematical, Physical and Computer Science, University of Parma, 43124 Parma, Italy)

  • Stefano Pasini

    (Department of Mathematical, Physical and Computer Science, University of Parma, 43124 Parma, Italy)

  • Donato Spoltore

    (Department of Mathematical, Physical and Computer Science, University of Parma, 43124 Parma, Italy)

Abstract

There has been a recent surge in interest toward thin film-based solar cells, specifically new absorber materials composed by Earth-abundant and non-toxic elements. Among these materials, antimony selenide (Sb 2 Se 3 ) is a good candidate due to its peculiar properties, such as an appropriate bandgap that promises a theoretical maximum power conversion efficiency of 33% and an absorption coefficient of around 10 5 cm −1 , enabling its use as a thin film absorber layer. However, charge carrier transport has been revealed to be problematic due to its cumbersome structure and the lack of a doping strategy. In this work, we aim to provide a clear picture of the state-of-the-art regarding research on Sb 2 Se 3 -based solar cells and its prospects, from the successful achievements to the challenges that are still to be overcome. We also report on the key parameters of antimony selenide with a close focus on the different characteristics associated with films grown from different techniques.

Suggested Citation

  • Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6862-:d:1249879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John F. Geisz & Ryan M. France & Kevin L. Schulte & Myles A. Steiner & Andrew G. Norman & Harvey L. Guthrey & Matthew R. Young & Tao Song & Thomas Moriarty, 2020. "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration," Nature Energy, Nature, vol. 5(4), pages 326-335, April.
    2. Liang Wang & Deng-Bing Li & Kanghua Li & Chao Chen & Hui-Xiong Deng & Liang Gao & Yang Zhao & Fan Jiang & Luying Li & Feng Huang & Yisu He & Haisheng Song & Guangda Niu & Jiang Tang, 2017. "Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    3. Stutenbaeumer, Ulrich & Lewetegn, Elias, 2000. "Comparison of minority carrier diffusion length measurements in silicon solar cells by the photo-induced open-circuit voltage decay (OCVD) with different excitation sources," Renewable Energy, Elsevier, vol. 20(1), pages 65-74.
    4. Alessandro Romeo & Elisa Artegiani, 2021. "CdTe-Based Thin Film Solar Cells: Past, Present and Future," Energies, MDPI, vol. 14(6), pages 1-24, March.
    5. Inès Massiot & Andrea Cattoni & Stéphane Collin, 2020. "Progress and prospects for ultrathin solar cells," Nature Energy, Nature, vol. 5(12), pages 959-972, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Fan & Bojun Wang & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Duy Phong Pham & Junsin Yi, 2023. "Real-Time ITO Layer Thickness for Solar Cells Using Deep Learning and Optical Interference Phenomena," Energies, MDPI, vol. 16(16), pages 1-13, August.
    2. Deng-Bing Li & Sandip S. Bista & Rasha A. Awni & Sabin Neupane & Abasi Abudulimu & Xiaoming Wang & Kamala K. Subedi & Manoj K. Jamarkattel & Adam B. Phillips & Michael J. Heben & Jonathan D. Poplawsky, 2022. "20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    4. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Costas Prouskas & Angelos Mourkas & Georgios Zois & Elefterios Lidorikis & Panos Patsalas, 2022. "A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-14, March.
    7. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Guanheng Fan & Yiqun Zhang & Xiangfei Ji & Yang Yang, 2022. "Two-Layer Ring Truss-Based Space Solar Power Station," Energies, MDPI, vol. 15(8), pages 1-21, April.
    9. Jie Zhang & Shanze Li, 2024. "The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb 2 Se 3 Thin-Film Solar Cells," Energies, MDPI, vol. 17(8), pages 1-14, April.
    10. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    12. Chen, Cheng & Xu, Tian-Bing & Yazdani, Atousa & Sun, Jian-Qiao, 2021. "A high density piezoelectric energy harvesting device from highway traffic — System design and road test," Applied Energy, Elsevier, vol. 299(C).
    13. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    14. Abdelrahman Lashin & Mohammad Al Turkestani & Mohamed Sabry, 2020. "Performance of a Thermoelectric Generator Partially Illuminated with Highly Concentrated Light," Energies, MDPI, vol. 13(14), pages 1-12, July.
    15. Chong Li & Qi Liu & Shengyang Tao, 2022. "Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    17. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    19. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    20. McNulty, Brian A. & Jowitt, Simon M., 2022. "Byproduct critical metal supply and demand and implications for the energy transition: A case study of tellurium supply and CdTe PV demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6862-:d:1249879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.