Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- M. C. Pegalajar & L. G. B. Ruiz, 2022. "Time Series Forecasting for Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-3, January.
- L. Cabezón & L. G. B. Ruiz & D. Criado-Ramón & E. J. Gago & M. C. Pegalajar, 2022. "Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
More about this item
Keywords
cyber-physical systems; neural networks; hybrid systems; automated machine learning; simulation; real-time embedded control systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3410-:d:919312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.