IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8127-d959479.html
   My bibliography  Save this article

Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review

Author

Listed:
  • Sameer Madhavan

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India)

  • Raunak Devdatta P B

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India)

  • Edison Gundabattini

    (Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India)

  • Arkadiusz Mystkowski

    (Faculty of Electrical Engineering, Department of Automatic Control and Robotics, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland)

Abstract

Induction motors have gained a renewed interest due to this new shift from conventional power sources to electric power. These motors are known for their high commencing torque, adequate speed control and reasonable overload capacity. However, induction motors have an innate thermal issue wherein their lifespan and performance are strongly temperature dependent. Hence, it is highly essential to focus on the thermal management aspect of these motors to ensure reliability and enhance performance. Thus, the major purpose of the paper is to comprehensively review various approaches and methods for thermal analysis, including finite element analysis, lumped parameter thermal network and computational fluid dynamics tools. Moreover, it also presents various cooling strategies commonly adopted in induction motors. Furthermore, this study also suggests an integrated approach with two or more cooling strategies to be the need of the hour. These will combine the benefits of the individual system while helping to counter their drawbacks. This study will help to serve members of the scientific community, manufacturers or motors users who are interested in the thermal management of induction motors.

Suggested Citation

  • Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8127-:d:959479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikita Gobichettipalayam Boopathi & Manoj Shrivatsaan Muthuraman & Ryszad Palka & Marcin Wardach & Pawel Prajzendanc & Edison Gundabattini & Raja Singh Rassiah & Darius Gnanaraj Solomon, 2022. "Modeling and Simulation of Electric Motors Using Lightweight Materials," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Ganesh Kumar Balakrishnan & Chong Tak Yaw & Siaw Paw Koh & Tarek Abedin & Avinash Ashwin Raj & Sieh Kiong Tiong & Chai Phing Chen, 2022. "A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations," Energies, MDPI, vol. 15(16), pages 1-37, August.
    3. Shaopeng Wu & Jinyang Zhou & Xinmiao Zhang & Jiaqiang Yu, 2022. "Design and Research on High Power Density Motor of Integrated Motor Drive System for Electric Vehicles," Energies, MDPI, vol. 15(10), pages 1-23, May.
    4. Zabdur Rehman & Kwanjae Seong, 2018. "Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket," Energies, MDPI, vol. 11(1), pages 1-15, January.
    5. Wei Le & Mingyao Lin & Keman Lin & Kai Liu & Lun Jia & Anchen Yang & Shuai Wang, 2021. "A Novel Stator Cooling Structure for Yokeless and Segmented Armature Axial Flux Machine with Heat Pipe," Energies, MDPI, vol. 14(18), pages 1-15, September.
    6. Mukherjee, Sayantan & Halder, Tamoghna & Ranjan, Shourya & Bose, Koustav & Mishra, Purna Chandra & Chakrabarty, Shanta, 2021. "Effects of SiO2 nanoparticles addition on performance of commercial engine coolant: Experimental investigation and empirical correlation," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaurav Kumar Pandey & Siddharth Sriram Sikha & Abhineet Thakur & Sai Sravan Yarlagadda & Sai Santosh Thatikonda & Bibin Baiju suja & Arkadiusz Mystkowski & Egidijus Dragašius & Edison Gundabattini, 2023. "Thermal Mapping and Heat Transfer Analysis of an Induction Motor of an Electric Vehicle Using Nanofluids as a Cooling Medium," Sustainability, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Osni Silva Junior & Jose Carlos Pereira Coninck & Fabiano Gustavo Silveira Magrin & Francisco Itamarati Secolo Ganacim & Anselmo Pombeiro & Leonardo Göbel Fernandes & Eduardo Félix Ribeiro Romaneli, 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model," Energies, MDPI, vol. 16(11), pages 1-15, May.
    3. Yingnan Wang & Chengming Zhang & Chaoyu Zhang & Liyi Li, 2023. "Review of High-Power-Density and Fault-Tolerant Design of Propulsion Motors for Electric Aircraft," Energies, MDPI, vol. 16(19), pages 1-31, October.
    4. Gaurav Kumar Pandey & Siddharth Sriram Sikha & Abhineet Thakur & Sai Sravan Yarlagadda & Sai Santosh Thatikonda & Bibin Baiju suja & Arkadiusz Mystkowski & Egidijus Dragašius & Edison Gundabattini, 2023. "Thermal Mapping and Heat Transfer Analysis of an Induction Motor of an Electric Vehicle Using Nanofluids as a Cooling Medium," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    5. Xiaochen Zhang & Han Zhao & Jing Li & Fengyu Zhang & Yue Zhang & Hongyu Yan & Zhihao Niu & David Gerada & He Zhang, 2022. "Experimental Investigation of Heat Pipe Inclination Angle Effect on Temperature Nonuniformity in Electrical Machines," Energies, MDPI, vol. 16(1), pages 1-14, December.
    6. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    7. Guishan Yan & Zhenlin Jin & Mingkun Yang & Bing Yao, 2021. "The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(5), pages 1-24, March.
    8. Jae-Beom Kang & Ji-Young Lee & Ji-Heon Lee, 2022. "Guidelines for Determining the Initial Shape and Specifications of High-Speed AFPM Based on Recent Research," Energies, MDPI, vol. 15(16), pages 1-16, August.
    9. Mengmeng Wang & Meng Lv & Haoting Liu & Qing Li, 2023. "Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm," Agriculture, MDPI, vol. 13(7), pages 1-22, June.
    10. Adrian Schäfer & Urs Pecha & Benedikt Kaiser & Martin Schmid & Nejila Parspour, 2023. "Accelerated 3D FEA of an Axial Flux Machine by Exclusively Using the Magnetic Scalar Potential," Energies, MDPI, vol. 16(18), pages 1-24, September.
    11. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Wenich Vattanapuripakorn & Sathapon Sonsupap & Khomson Khannam & Natthakrit Bamrungwong & Prachakon Kaewkhiaw & Jiradanai Sarasamkan & Bopit Bubphachot, 2022. "Advanced Electric Battery Power Storage for Motors through the Use of Differential Gears and High Torque for Recirculating Power Generation," Clean Technol., MDPI, vol. 4(4), pages 1-14, October.
    13. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
    14. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    15. Taewook Ha & Nyeon Gu Han & Min Soo Kim & Kyu Heon Rho & Dong Kyu Kim, 2021. "Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding," Energies, MDPI, vol. 14(4), pages 1-15, February.
    16. Guo Hong & Tian Wei & Xiaofeng Ding & Chongwei Duan, 2018. "Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio," Energies, MDPI, vol. 11(5), pages 1-21, May.
    17. Changchuang Huang & Baoquan Kou & Xiaokun Zhao & Xu Niu & Lu Zhang, 2022. "Multi-Objective Optimization Design of a Stator Coreless Multidisc Axial Flux Permanent Magnet Motor," Energies, MDPI, vol. 15(13), pages 1-13, June.
    18. Federica Graffeo & Silvio Vaschetto & Alessio Miotto & Fabio Carbone & Alberto Tenconi & Andrea Cavagnino, 2021. "Lumped-Parameters Thermal Network of PM Synchronous Machines for Automotive Brake-by-Wire Systems," Energies, MDPI, vol. 14(18), pages 1-18, September.
    19. Likun Ai & Yiping Lu & Jiade Han & Wenxu Suo, 2023. "Simulation of the Temperature of a Shielding Induction Motor of the Nuclear Main Pump under Different Turbulence Models," Energies, MDPI, vol. 16(6), pages 1-15, March.
    20. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8127-:d:959479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.