IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6099-d894962.html
   My bibliography  Save this article

Guidelines for Determining the Initial Shape and Specifications of High-Speed AFPM Based on Recent Research

Author

Listed:
  • Jae-Beom Kang

    (Air Mobility Electric-Motor & Drive Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
    Electric Energy Conversion Engineering, University of Science and Technology (UST), Daejeon 34113, Korea)

  • Ji-Young Lee

    (Air Mobility Electric-Motor & Drive Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
    Electric Energy Conversion Engineering, University of Science and Technology (UST), Daejeon 34113, Korea)

  • Ji-Heon Lee

    (Air Mobility Electric-Motor & Drive Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
    Mechanical Engineering, Pusan National University (PNU), Pusan 46241, Korea)

Abstract

This paper presents guidelines for determining the initial shape and specifications of a high-speed axial-flux permanent-magnet (AFPM) machine in a hybrid-electric propulsion system in two steps based on previous studies and product review results related to high-speed AFPMs. In the first step, three characteristics to be considered when designing AFPMs were classified as: electromagnetic, thermal, and mechanical. Then, the factors that should be considered in the design process to satisfy each characteristic were organized. In the second step, “the speed–output power” relationship was defined to predict the limits of applying AFPMs to high-speed applications, allowing an estimation of the limits of the speed range that can be used within the proposed output power.

Suggested Citation

  • Jae-Beom Kang & Ji-Young Lee & Ji-Heon Lee, 2022. "Guidelines for Determining the Initial Shape and Specifications of High-Speed AFPM Based on Recent Research," Energies, MDPI, vol. 15(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6099-:d:894962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Le & Mingyao Lin & Keman Lin & Kai Liu & Lun Jia & Anchen Yang & Shuai Wang, 2021. "A Novel Stator Cooling Structure for Yokeless and Segmented Armature Axial Flux Machine with Heat Pipe," Energies, MDPI, vol. 14(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Xiaochen Zhang & Han Zhao & Jing Li & Fengyu Zhang & Yue Zhang & Hongyu Yan & Zhihao Niu & David Gerada & He Zhang, 2022. "Experimental Investigation of Heat Pipe Inclination Angle Effect on Temperature Nonuniformity in Electrical Machines," Energies, MDPI, vol. 16(1), pages 1-14, December.
    3. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Adrian Schäfer & Urs Pecha & Benedikt Kaiser & Martin Schmid & Nejila Parspour, 2023. "Accelerated 3D FEA of an Axial Flux Machine by Exclusively Using the Magnetic Scalar Potential," Energies, MDPI, vol. 16(18), pages 1-24, September.
    5. Guangchen Wang & Yingjie Wang & Yuan Gao & Wei Hua & Qinan Ni & Hengliang Zhang, 2022. "Thermal Model Approach to the YASA Machine for In-Wheel Traction Applications," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6099-:d:894962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.