IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1364-d509146.html
   My bibliography  Save this article

The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System

Author

Listed:
  • Guishan Yan

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
    Heavy-Duty Intelligent Manufacturing Equipment Innovation Center of Hebei Province, Qinhuangdao 066004, China)

  • Zhenlin Jin

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
    Heavy-Duty Intelligent Manufacturing Equipment Innovation Center of Hebei Province, Qinhuangdao 066004, China)

  • Mingkun Yang

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Bing Yao

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract

The electro-hydraulic servo pump control system (EHSPCS) is a high-performance control unit that integrates a permanent magnet synchronous motor (PMSM) and a closed hydraulic system (CHS). The design features of high integration and a high power-weight ratio lead to the poor heat dissipation capacity and high thermal balance temperature of the system. Excessive temperature will seriously affect the system’s performance and service life. Therefore, the thermal balance analysis method of the EHSPCS under different loads and different wind speeds was proposed in this paper. Firstly, the PMSM and CHS were taken as research objects to analyze the heating source of the system. The thermal power model was established, and the calculation was performed. The variation rule of the thermal power generated by each component with the load torque under the typical rotating speed was obtained. Secondly, the system’s temperature field thermal balance solution model was established. ANSYS and AMESim software were used to calculate the thermal balance points of the PMSM and CHS under different working conditions. The change rule of the thermal balance temperature field of the EHSPCS under different loads was analyzed with the conditions of the natural cooling and forced wind cooling of the PMSM. Finally, an experimental platform was built for experimental research, and the experimental temperature of the system under different loads and different wind speeds was measured. Through comparison and analysis with the simulation results, the correctness and feasibility of the thermal balance theoretical analysis method were verified. The research results will lay the foundation for thermal balance research on the EHSPCS, and have guiding significance for system design, component selection, and load matching.

Suggested Citation

  • Guishan Yan & Zhenlin Jin & Mingkun Yang & Bing Yao, 2021. "The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1364-:d:509146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo Hong & Tian Wei & Xiaofeng Ding & Chongwei Duan, 2018. "Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio," Energies, MDPI, vol. 11(5), pages 1-21, May.
    2. Bo Yu & Shuai Wu & Zongxia Jiao & Yaoxing Shang, 2018. "Multi-Objective Optimization Design of an Electrohydrostatic Actuator Based on a Particle Swarm Optimization Algorithm and an Analytic Hierarchy Process," Energies, MDPI, vol. 11(9), pages 1-15, September.
    3. Zabdur Rehman & Kwanjae Seong, 2018. "Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Minh Tri Nguyen & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Application of Electro-Hydraulic Actuator System to Control Continuously Variable Transmission in Wind Energy Converter," Energies, MDPI, vol. 12(13), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingkun Yang & Gexin Chen & Jianxin Lu & Cong Yu & Guishan Yan & Chao Ai & Yanwen Li, 2021. "Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingkun Yang & Gexin Chen & Jianxin Lu & Cong Yu & Guishan Yan & Chao Ai & Yanwen Li, 2021. "Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Gaurav Kumar Pandey & Siddharth Sriram Sikha & Abhineet Thakur & Sai Sravan Yarlagadda & Sai Santosh Thatikonda & Bibin Baiju suja & Arkadiusz Mystkowski & Egidijus Dragašius & Edison Gundabattini, 2023. "Thermal Mapping and Heat Transfer Analysis of an Induction Motor of an Electric Vehicle Using Nanofluids as a Cooling Medium," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    4. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Cong-Trang Nguyen & Thanh Long Duong & Minh Quan Duong & Duc Tung Le, 2020. "Chattering-Free Single-Phase Robustness Sliding Mode Controller for Mismatched Uncertain Interconnected Systems with Unknown Time-Varying Delays," Energies, MDPI, vol. 13(1), pages 1-27, January.
    6. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    7. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    9. Taewook Ha & Nyeon Gu Han & Min Soo Kim & Kyu Heon Rho & Dong Kyu Kim, 2021. "Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding," Energies, MDPI, vol. 14(4), pages 1-15, February.
    10. Guo Hong & Tian Wei & Xiaofeng Ding & Chongwei Duan, 2018. "Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio," Energies, MDPI, vol. 11(5), pages 1-21, May.
    11. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Federica Graffeo & Silvio Vaschetto & Alessio Miotto & Fabio Carbone & Alberto Tenconi & Andrea Cavagnino, 2021. "Lumped-Parameters Thermal Network of PM Synchronous Machines for Automotive Brake-by-Wire Systems," Energies, MDPI, vol. 14(18), pages 1-18, September.
    13. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    14. Likun Ai & Yiping Lu & Jiade Han & Wenxu Suo, 2023. "Simulation of the Temperature of a Shielding Induction Motor of the Nuclear Main Pump under Different Turbulence Models," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Nie, Songlin & Gao, Jianhang & Ma, Zhonghai & Yin, Fanglong & Ji, Hui, 2023. "An online data-driven approach for performance prediction of electro-hydrostatic actuator with thermal-hydraulic modeling," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Yuqi Fan & Junpeng Shao & Guitao Sun & Xuan Shao, 2020. "Proportional–Integral–Derivative Controller Design Using an Advanced Lévy-Flight Salp Swarm Algorithm for Hydraulic Systems," Energies, MDPI, vol. 13(2), pages 1-20, January.
    17. Ruizhe Li & Yuhuan Du & Yang Yu, 2022. "Research on Refined Modeling and Fuzzy Control of Electro-Hydrostatic Actuator with Co-Simulation Method," Energies, MDPI, vol. 15(23), pages 1-25, December.
    18. Taewook Ha & Dong Kyu Kim, 2021. "Study of Injection Method for Maximizing Oil-Cooling Performance of Electric Vehicle Motor with Hairpin Winding," Energies, MDPI, vol. 14(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1364-:d:509146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.