IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6000-d892054.html
   My bibliography  Save this article

A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations

Author

Listed:
  • Ganesh Kumar Balakrishnan

    (Wisma TNB, No. 19, Jalan Timur, Petaling Jaya 46200, Selangor, Malaysia)

  • Chong Tak Yaw

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • Siaw Paw Koh

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • Tarek Abedin

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • Avinash Ashwin Raj

    (TNBR Sdn. Bhd., No.1, Lorong Air Hitam, Kawasan Institusi Penyelidikan Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia)

  • Sieh Kiong Tiong

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • Chai Phing Chen

    (Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

Abstract

Condition-based monitoring (CBM) has emerged as a critical instrument for lowering the cost of unplanned operations while also improving the efficacy, execution, and dependability of tools. Thermal abnormalities can be thoroughly examined using thermography for condition monitoring. Thanks to the advent of high-resolution infrared cameras, researchers are paying more attention to thermography as a non-contact approach for monitoring the temperature rise of objects and as a technique in great experiments to analyze processes thermally. It also allows for the early identification of weaknesses and failures in equipment while it is in use, decreasing system downtime, catastrophic failure, and maintenance expenses. In many applications, the usage of IRT as a condition monitoring approach has steadily increased during the previous three decades. Infrared cameras are steadily finding use in research and development, in addition to their routine use in condition monitoring and preventative maintenance. This study focuses on infrared crucial thermographic theoretical stages, experimental methodologies, relative and absolute temperature requirements, and infrared essential thermographic theoretical processes for electrical and electronics energy applications. Furthermore, this article addresses the major concerns and obstacles and makes some specific recommendations for future development. With developments in artificial intelligence, particularly computer fiction, depending on the present deep learning algorithm, IRT can boost CBM analysis.

Suggested Citation

  • Ganesh Kumar Balakrishnan & Chong Tak Yaw & Siaw Paw Koh & Tarek Abedin & Avinash Ashwin Raj & Sieh Kiong Tiong & Chai Phing Chen, 2022. "A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations," Energies, MDPI, vol. 15(16), pages 1-37, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6000-:d:892054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter Nguyen Phuc & Hendrik Vansompel & Dimitar Bozalakov & Kurt Stockman & Guillaume Crevecoeur, 2019. "Inverse Thermal Identification of a Thermally Instrumented Induction Machine Using a Lumped-Parameter Thermal Model," Energies, MDPI, vol. 13(1), pages 1-27, December.
    2. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    3. Jaroslaw Gielniak & Magdalena Czerniak, 2021. "Investigation of Distribution Transformers Vibrations in Terms of Core and Winding Condition Assessment," Energies, MDPI, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osni Silva Junior & Jose Carlos Pereira Coninck & Fabiano Gustavo Silveira Magrin & Francisco Itamarati Secolo Ganacim & Anselmo Pombeiro & Leonardo Göbel Fernandes & Eduardo Félix Ribeiro Romaneli, 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model," Energies, MDPI, vol. 16(11), pages 1-15, May.
    2. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    4. Mengmeng Wang & Meng Lv & Haoting Liu & Qing Li, 2023. "Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm," Agriculture, MDPI, vol. 13(7), pages 1-22, June.
    5. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    3. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    4. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
    6. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    7. Becky Corley & Sofia Koukoura & James Carroll & Alasdair McDonald, 2021. "Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    8. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Sun, YongTeng & Ma, HongZhong, 2024. "Research progress on oil-immersed transformer mechanical condition identification based on vibration signals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    10. Fernanda Cruz Rios & Sulaiman Al Sultan & Oswald Chong & Kristen Parrish, 2023. "Empowering Owner-Operators of Small and Medium Commercial Buildings to Identify Energy Retrofit Opportunities," Energies, MDPI, vol. 16(17), pages 1-20, August.
    11. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    12. Haichao Zheng & Xue Zhong & Junru Yan & Lihua Zhao & Xintian Wang, 2020. "A Thermal Performance Detection Method for Building Envelope Based on 3D Model Generated by UAV Thermal Imagery," Energies, MDPI, vol. 13(24), pages 1-18, December.
    13. Wenchuan Gu & Xuezeng Liu & Zhen Li, 2024. "Sustainable Infrastructure Maintenance: Crack Depth Detection in Tunnel Linings via Natural Temperature Variations and Infrared Imaging," Sustainability, MDPI, vol. 16(9), pages 1-16, April.
    14. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Krzysztof Łowczowski & Jacek Roman, 2023. "Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles," Energies, MDPI, vol. 16(17), pages 1-18, August.
    16. Daniele Vidal & Rui Pitarma, 2019. "Infrared Thermography Applied to Tree Health Assessment: A Review," Agriculture, MDPI, vol. 9(7), pages 1-15, July.
    17. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    18. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    19. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6000-:d:892054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.