IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5717-d633086.html
   My bibliography  Save this article

A Novel Stator Cooling Structure for Yokeless and Segmented Armature Axial Flux Machine with Heat Pipe

Author

Listed:
  • Wei Le

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Mingyao Lin

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Keman Lin

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210096, China)

  • Kai Liu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Lun Jia

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Anchen Yang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Shuai Wang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

The yokeless and segmented armature axial flux machine is considered an excellent topology for electric vehicles application. However, its performance is severely limited by the stator cooling system. The heat pipe, as the small size, lightweight, but highly efficient passive phase-change cooling element, has been attracting more and more attention in the thermal management methods of electric motors. Therefore, the relationship between the thermal performance of the heat pipe with temperature is measured in detail through an experimental test platform in this paper. Further, a novel stator cooling structure that combines the heat pipe with the housing water-cooling method is introduced to improve the temperature distribution of the stator. Computational fluid dynamics (CFD) simulation verifies that the proposed cooling structure can accelerate the release of heat from the stator and reduce the temperature of the stator significantly.

Suggested Citation

  • Wei Le & Mingyao Lin & Keman Lin & Kai Liu & Lun Jia & Anchen Yang & Shuai Wang, 2021. "A Novel Stator Cooling Structure for Yokeless and Segmented Armature Axial Flux Machine with Heat Pipe," Energies, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5717-:d:633086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5717/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Schäfer & Urs Pecha & Benedikt Kaiser & Martin Schmid & Nejila Parspour, 2023. "Accelerated 3D FEA of an Axial Flux Machine by Exclusively Using the Magnetic Scalar Potential," Energies, MDPI, vol. 16(18), pages 1-24, September.
    2. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Jae-Beom Kang & Ji-Young Lee & Ji-Heon Lee, 2022. "Guidelines for Determining the Initial Shape and Specifications of High-Speed AFPM Based on Recent Research," Energies, MDPI, vol. 15(16), pages 1-16, August.
    5. Guangchen Wang & Yingjie Wang & Yuan Gao & Wei Hua & Qinan Ni & Hengliang Zhang, 2022. "Thermal Model Approach to the YASA Machine for In-Wheel Traction Applications," Energies, MDPI, vol. 15(15), pages 1-18, July.
    6. Xiaochen Zhang & Han Zhao & Jing Li & Fengyu Zhang & Yue Zhang & Hongyu Yan & Zhihao Niu & David Gerada & He Zhang, 2022. "Experimental Investigation of Heat Pipe Inclination Angle Effect on Temperature Nonuniformity in Electrical Machines," Energies, MDPI, vol. 16(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5717-:d:633086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.