IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8938-d984644.html
   My bibliography  Save this article

A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors

Author

Listed:
  • Rahul R. Kumar

    (School of Information Technology, Engineering, Mathematics and Physics, University of the South Pacific, Private Mail Bag Laucala Campus, Suva, Fiji Islands)

  • Mauro Andriollo

    (Electrical Machines Lab, University of Padova, 35121 Padova, Italy)

  • Giansalvo Cirrincione

    (Laboratory of Novel Technologies, University of Picardie Jules Verne, 80000 Amiens, France)

  • Maurizio Cirrincione

    (School of Information Technology, Engineering, Mathematics and Physics, University of the South Pacific, Private Mail Bag Laucala Campus, Suva, Fiji Islands)

  • Andrea Tortella

    (Electrical Machines Lab, University of Padova, 35121 Padova, Italy)

Abstract

This review paper looks briefly at conventional approaches and examines the intelligent means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard methods for the FD and CM of rotating machines are first visited, and then its orientation towards intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together with their advancements to date. In particular, the emphasis is given to motor current signature analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engineering. Consequently, the statistical procedures and machine learning techniques (stemming from artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of neural- and non-neural-based approaches are discussed concerning major faults in rotating machines. Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical drives, several open problems are identified and discussed. The paper concludes with important recommendations on where to divert the research focus considering the current advancements in the FD and CM of rotating machines.

Suggested Citation

  • Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8938-:d:984644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levent Eren, 2017. "Bearing Fault Detection by One-Dimensional Convolutional Neural Networks," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, July.
    2. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    3. Ganesh Kumar Balakrishnan & Chong Tak Yaw & Siaw Paw Koh & Tarek Abedin & Avinash Ashwin Raj & Sieh Kiong Tiong & Chai Phing Chen, 2022. "A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations," Energies, MDPI, vol. 15(16), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    3. Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Osni Silva Junior & Jose Carlos Pereira Coninck & Fabiano Gustavo Silveira Magrin & Francisco Itamarati Secolo Ganacim & Anselmo Pombeiro & Leonardo Göbel Fernandes & Eduardo Félix Ribeiro Romaneli, 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model," Energies, MDPI, vol. 16(11), pages 1-15, May.
    3. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    4. Muhammad Amir Khan & Bilal Asad & Karolina Kudelina & Toomas Vaimann & Ants Kallaste, 2022. "The Bearing Faults Detection Methods for Electrical Machines—The State of the Art," Energies, MDPI, vol. 16(1), pages 1-54, December.
    5. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    6. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    7. Md Sydur Rahman & Grace Firsta Lukman & Pham Trung Hieu & Kwang-Il Jeong & Jin-Woo Ahn, 2021. "Optimization and Characteristics Analysis of High Torque Density 12/8 Switched Reluctance Motor Using Metaheuristic Gray Wolf Optimization Algorithm," Energies, MDPI, vol. 14(7), pages 1-17, April.
    8. Haipeng Liu & Xin Jin & Nicola Bianchi & Gerd Bramerdorfer & Pengzhong Hu & Chengning Zhang & Yongxi Yang, 2022. "A Permanent Magnet Assembling Approach to Mitigate the Cogging Torque for Permanent Magnet Machines Considering Manufacturing Uncertainties," Energies, MDPI, vol. 15(6), pages 1-19, March.
    9. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    10. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    11. Prashant Kumar & Prince Kumar & Ananda Shankar Hati & Heung Soo Kim, 2022. "Deep Transfer Learning Framework for Bearing Fault Detection in Motors," Mathematics, MDPI, vol. 10(24), pages 1-14, December.
    12. Mengmeng Wang & Meng Lv & Haoting Liu & Qing Li, 2023. "Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm," Agriculture, MDPI, vol. 13(7), pages 1-22, June.
    13. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    14. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    15. Xueping Xu & Qinkai Han & Fulei Chu, 2018. "Review of Electromagnetic Vibration in Electrical Machines," Energies, MDPI, vol. 11(7), pages 1-33, July.
    16. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    17. Chengcheng Liu & Gang Lei & Bo Ma & Youguang Guo & Jianguo Zhu, 2018. "Robust Design of a Low-Cost Permanent Magnet Motor with Soft Magnetic Composite Cores Considering the Manufacturing Process and Tolerances," Energies, MDPI, vol. 11(8), pages 1-17, August.
    18. Niklas Umland & Kora Winkler & David Inkermann, 2023. "Multidisciplinary Design Automation of Electric Motors—Systematic Literature Review and Methodological Framework," Energies, MDPI, vol. 16(20), pages 1-39, October.
    19. Noman Ullah & Abdul Basit & Faisal Khan & Wasiq Ullah & Mohsin Shahzad & Atif Zahid, 2018. "Enhancing Capabilities of Double Sided Linear Flux Switching Permanent Magnet Machines," Energies, MDPI, vol. 11(10), pages 1-21, October.
    20. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8938-:d:984644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.