Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.09.101
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
- Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
- Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA," Renewable Energy, Elsevier, vol. 36(12), pages 3461-3471.
- Aldersey-Williams, J. & Rubert, T., 2019. "Levelised cost of energy – A theoretical justification and critical assessment," Energy Policy, Elsevier, vol. 124(C), pages 169-179.
- Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
- Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
- Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
- Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
- Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
- Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
- Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
- Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
- Vennell, Ross, 2012. "Realizing the potential of tidal currents and the efficiency of turbine farms in a channel," Renewable Energy, Elsevier, vol. 47(C), pages 95-102.
- Vennell, Ross, 2012. "The energetics of large tidal turbine arrays," Renewable Energy, Elsevier, vol. 48(C), pages 210-219.
- Garrett, Chris & Cummins, Patrick, 2008. "Limits to tidal current power," Renewable Energy, Elsevier, vol. 33(11), pages 2485-2490.
- Vennell, Ross, 2013. "Exceeding the Betz limit with tidal turbines," Renewable Energy, Elsevier, vol. 55(C), pages 277-285.
- Vennell, Ross, 2011. "Estimating the power potential of tidal currents and the impact of power extraction on flow speeds," Renewable Energy, Elsevier, vol. 36(12), pages 3558-3565.
- Culley, D.M. & Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays," Renewable Energy, Elsevier, vol. 85(C), pages 215-227.
- Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhen Qin & Xiaoran Tang & Yu-Ting Wu & Sung-Ki Lyu, 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
- Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
- González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2018. "Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 647-658.
- Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
- Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
- Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
- Topper, Mathew B.R. & Olson, Sterling S. & Roberts, Jesse D., 2021. "On the benefits of negative hydrodynamic interactions in small tidal energy arrays," Applied Energy, Elsevier, vol. 297(C).
- Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
- Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
- du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
- Smeaton, Malcolm & Vennell, Ross & Harang, Alice, 2016. "The effect of channel constriction on the potential for tidal stream power," Renewable Energy, Elsevier, vol. 99(C), pages 45-56.
- Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
- Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.
- Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
- Zoe Goss & Daniel Coles & Matthew Piggott, 2021. "Economic analysis of tidal stream turbine arrays: a review," Papers 2105.04718, arXiv.org.
- Divett, Tim & Vennell, Ross & Stevens, Craig, 2016. "Channel-scale optimisation and tuning of large tidal turbine arrays using LES with adaptive mesh," Renewable Energy, Elsevier, vol. 86(C), pages 1394-1405.
- du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
- Wei-Bo Chen & Wen-Cheng Liu & Ming-Hsi Hsu, 2013. "Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait," Energies, MDPI, vol. 6(4), pages 1-13, April.
- González-Gorbeña, Eduardo & Pacheco, André & Plomaritis, Theocharis A. & Ferreira, Óscar & Sequeira, Cláudia, 2018. "Estimating the optimum size of a tidal array at a multi-inlet system considering environmental and performance constraints," Applied Energy, Elsevier, vol. 232(C), pages 292-311.
- Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
More about this item
Keywords
Tidal; Current; Energy; Resource; Assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1890-1905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.